
ICCEEg: 1 (14) – Dezembro 2016 17

Exploiting Formal Methods to Simplify the
Modeling of Flexible Manufacturing Systems

Joceleide D. C. Mumbelli Marcelo Rosa Patrik B. Schettert Marcelo Teixeira

Resumo—Flexible Manufacturing Systems (FMS) tend to be
large, complex and to depend on an increasingly numerous and
intricate set of requirements. To be properly controlled, aFMS
requires software engineers to combine thousands of program-
ming rules, empirically addressing parallelism, concurrency, etc.
Yet, in the end there is no quality guarantees about the imagined
solution, as human-centered development practices dependon
the designer’s inspiration to be conducted. In contrast, formal
approaches for FMS control (such as theSupervisory Control
Theory), allow to automatically calculate optimal operational
sequences to industrial processes, but they require a modeling
structure as input. This itself can be infeasible to be obtained
for large and complex processes. In this paper, we present an
example of a FMS for which an optimal control logic would
depend on an intricate structure of models that could make a
solution infeasible to be derived by hands. Then, we describe and
apply a formal alternative that can substantially reduce modeling
effort, while leading to an equivalent resulting model, which can
then be used as input to control synthesis algorithms.

Index Terms—Flexible Manufacturing Systems, Formal Mod-
eling, Complex Programming.

I. I NTRODUCTION

A Manufacturing System(MS) refers to an industrial pro-
duction process through which materials are transformed into
products by integrating people, equipments and technology
[1]. When a MS is context sensitive, i.e., it reacts to changes
occurred in the factory and starts to behave differently, in
different situations, then the systems is said to beflexibleand
the whole structure is calledFlexible Manufacturing System
(FMS) [2]. Nowadays, FMSs represent an opportunity for
shifting from fixed to customized production and, when asso-
ciated to computational technology, e.g., web and intelligence,
they lead to modern advanced methods for industry.

In spite of the practical relevance, the current standards
of industrial processes suggest that FMSs tend to be large,
complex and to depend on an increasingly numerous and in-
tricate set of requirements. This makes it difficult for a FMSto
be approached using traditional programming. To be properly
coordinated, a FMS requires software engineers to combine
thousands of programming rules, empirically addressing par-
allelism, concurrency, etc. Yet, in the end there is no quality
guarantees about the imagined solution, as human-centered
development practices depend on the designer’s inspiration to
be conducted. In contrast, formal approaches for FMSs coor-
dination (such as theSupervisory Control Theory[3]), allow

The authors are with the Academic Department of In-
formatics (DAINF) of the Federal University of Technology
- Paraná (UTFPR), Pato Branco, Brasil ({joceleide,
marcelorosa, patrik}@alunos.utfpr.edu.br,
marceloteixeira@utfpr.edu.br).

to automatically calculate their optimal operational sequences.
However, those methods require a modeling structure as input,
which itself can be infeasible to handle for large and complex
processes.

In this paper, we present an example of a FMS for which
an optimal coordination logic would depend on an intricate
structure of models. We start by showing how the system could
be modeled by using the conventional theory ofLanguages
and Automata[4], [5]. Using this initial structure of models,
it will be illustrated how complex can become the task of co-
ordinating the system if we consider the reasonable possibility
of manufacturing more than one type of product in parallel.
The case will be incrementally illustrated until the modeling
task can be considered unfeasible.

Then, we present a formal alternative based onExtended
Automata, that can substantially reduce modeling effort pro-
ducing more concise and readable models, while keeping
equivalent resulting behavior, which can then be used as
input to control synthesis algorithms. A step-guide to the use
of Extended Automata to model industrial processes is also
provided and illustrated in the context of the same example of
FMS, which allows the approaches to be compared.

The paper is structures as follows: Section II introduces
some preliminaries on FMS modeling and coordination; Sec-
tion III presents an example that motivates the alternative
modeling method described in Section IV. Section V proposes
a methodology for the modeling of complex FMSs, which
is followed by an example. Conclusions and perspectives as
discussed in Section VI.

II. PRELIMINARIES

FMSs are maybe the most representative example of a class
of systems calledDiscrete Event Systems(DESs) [4]. DESs
have in common the fact that their transitions are not guided
by the time, but byeventsthat occur irregularly, progressing
the systems in many different and unpredictable manners.
It is conceivable that modeling DESs is also different from
modeling time-dependent systems. While the latter can be
addressed, for example, by using differential equations, SEDs
are more naturally modeled by state-transition diagrams, as
described next.

A. FMS Conventional Modeling

Languagesare formalisms that can be used to describe
discrete-event behaviors [4]. Their basic structure areevents,
which are taken from a finitealphabetΣ, whereΣ∗ denotes the
set of all finitestringsgenerated by events fromΣ, including

ICCEEg: 1 (14) – Dezembro 2016 18

the empty stringε. A subsetL ⊆ Σ∗ is called alanguage.
The prefix-closureof a languageL is L = { s ∈ Σ∗ | st ∈
L for somet ∈ Σ∗ }.

A languageL it is said to beregular if, and only if, it
can be recognized by finite-state automata [6]. In industry,
regularity is of interest, as it delimits a class of languages
that are suitable for computational processing, i.e., theycan
be represented by automata that occupy finite memory when
stored in a computer [4].

A Finite State Automata(FA) define a simple and power-
ful framework to formally recognize languages that describe
discrete behaviors and their properties. A FA can be formally
represented as a 5-tupleG = 〈Σ , Q, q◦, Qω,→〉, where:Σ is
the alphabet of events;Q is the set of states;q◦ ∈ Q is the
initial state;Qω ⊆ Q is the subset of marked states (complete
tasks);→ ⊆ Q × Σ ×Q is the state transition relation.

For two any statesq1, q2 ∈ Q, we denote byq1
σ
→ q2, a

transition from the stateq1 to q2 with the eventσ ∈ Σ. G
s
→ q

denotes that a strings is possible in the FAG. Two languages
can be defined fromG: L(G) = {s ∈ Σ∗ | G

s
→ q ∈ Q};

Lω(G) = {s ∈ Σ∗ | G
s
→ q ∈ Qω}. L(G) is the generated

language, containing all strings possible inG, whileLω(G) is
themarked language, i.e., the set of strings leading to marked
states.

Two FA, A = 〈ΣA , QA
, q◦

A
, Qω

A
,→A〉 andB = 〈ΣB , QB

,

q◦
B
, Qω

B
,→B〉, can be synchronously composed by:

A ‖ B = 〈ΣA ∪ ΣB , QA ×QB , (q
◦

A , q
◦

B), Q
ω
A ×Qω

B ,→〉,

in which:
• (qA, qB)

σ
→ (q′A, q

′

B), if σ ∈ ΣA ∩ ΣB ;
• (qA, qB)

σ
→ (q′A, qB), if σ ∈ ΣA \ ΣB ;

• (qA, qB)
σ
→ (qA, q

′

B), if σ ∈ ΣB \ ΣA .
In ‖, the events shared by the two FA are synchronized,

while other events are interleaved. Fig. 1 illustrates the use of
the operator‖ to compose two FAA andB.

0 1

a b

0a 0b1a

1b

α

α
αβ

β

βγ
γ

γ
δ

δ

δ

A:

B:
A‖B:

Fig. 1. Example of synchronous composition of FA.

For a set of FAGi = 〈Σi, Qi, q
◦

i , Q
ω
i ,→i〉, for i =

1, · · · , n, a global modelG = 〈ΣG , Q
G
, q◦

G
, Qω

G
,→G〉 can

be obtained by the compositionG =
fn
i=1

Gi, such that
ΣG =

⋃n

i=1
Σi. Compositions are particularly useful to allow

systems to be modularly expressed.

B. FMS Coordination

In the context of FMS automation, an important step is to
properly (optimally) program the operational sequences (coor-
dination logic) for the system to be commanded under control.
This is a discrete event-driven activity that can be addressed
by empirical programming, or it can be alternatively supported
by formal methods and automated software engineering.

From the synchronous composition (‖) of automata (FA
or EFA), it becomes possible to modularly design an entire
system model (also known as plant)G by composingm
subsystem modelsG = ‖

m

i=1
Gi. Similarly, control rules can be

imposed by specifications modelsEj which are individually
expressed and composed afterwards to formE = ‖

n

j=1
Ej.

This step-by-step procedure tends to facilitate modeling tasks.
When combined,G andE lead to a structureK = G‖E, such
thatLω(K) ⊆ Lω(G), that reflects the desired behavior under
control. This structure can then be translated to implementable
notations using automated tools for code generation [7].

When a FMS involves partially-controllable behaviors, it
has to be controlled in a way to recognize the impossibility
of disabling some its events. TheSupervisory Control Theory
(SCT) [3] is a formal alternative that allows to extract,
from a FSM modelK, its least restrictive, nonblocking and
controllable sub-modelK’, which can then be used for im-
plementation purposes. In this case,L(K′) is associated to
the specific sub-language that more closely approximates from
L(K), preserving controllability with respect toL(G) without
violating any requirement inE.

In spite of the advanced alternatives for calculating control
solutions for FMSs, such as SCT, its several extensions and
related tooling support, remark that computingK’ depends on
having modelsG andE. This itself is a human-centered task
that depends on the designer. In this paper, we argue that some
FMSs may involve a complex combination of events, such that
G and/orE can be too much difficult to be manually structured
(see example next). For these cases, we propose in Section
IV an alternative that can substantially reduce modeling effort
while preserving the same behavior ofK.

III. A N EXAMPLE

The main problem approached in this paper is dimensioned
in this section. For that, we use an example of a real industrial
process, in the context of the experimental manufacturing cell
XC241, produced byExsto Tecnologia[8], which is illustrated
in Fig. 2.

S1S2S3

P0 P1 P2 P3

B1 B2 B3

A1 A2 A3

Fig. 2. Example of a manufacturing cell

The process is composed by sensors positioned such that
they identify the size of workpieces arriving at a manufacturing
line, by a conveyor that carries workpieces throughout the
process , and by actuators that remove them from the conveyor
to output buffers. Arriving workpieces are assumed to have
3 different sizes:small (sensorS1), regular (sensorS2) and
large (sensorS3), which also defines their separation by the

ICCEEg: 1 (14) – Dezembro 2016 19

TABLE I
NOTATION FOR THE EVENTS COMPOSING THE PLANT MODEL

Component Event Description

Sensors si, i = 1, 2, 3 sensor identifying a workpiece of the size 1 (small),2 (regular)
or 3 (large)

Manipulators sAi, i = 1, 2, 3 Event activating the actuatorA1, A2 or A3

fAi, i = 1, 2, 3 Event identifying that the actuatorA1, A2 or A3 is retreated
Conveyor sC Conveyor activation

fC Conveyor deactivation

respective actuatorA1, A2 or A3 to the respective bufferB1,
B2 or B3. The conveyor behavior is sectored into 4 positions
in a way to facilitate the manufacturing process. The initial
position (P0) is neutral and it is used to receive external
workpieces. The other positions (P1, P2 andP3) coincide with
the respective actuator action point. Table I summarizes the
process components and their respective events that will be
used to design the plant model.

In Figure 3 the componentsS1, S2, S3, A1, A2, A3 and
Conveyor are respectively modeled by the automataGi, i =
1, · · · 7, such that the composite system plant is given byG =
‖
7

i=1
Gi.

G1 :

s1
G2 :

s2
G3 :

s3
G4 :

fA1

sA1

G5 :

fA2

sA2 G6 :

fA3

sA3 G7 :

fC

sC

Fig. 3. Modular version of the system plantG = ‖7
i=1

Gi

The three sensors are modeled by self-loops in the automata
G1, G2 andG3. Note that the activation of a sensor usually
leads it back to the previous (initial) state, i.e., the sensor
signal happens, is has to be recognized in terms of string com-
position, but there is no state-change. The other components
are modeled by simple two-state automata representing their
beginning and conclusion of operation.

In order to restrict the system plant to a given behavior
expected under control, the following objective is assumedin
the context of a specificationE: “Each workpiece must be
separated according to its size”.

DesigningE could be a trivial task if it was assumed that a
single type of workpiece arrives in the system, or that a single
workpiece is processed at a time. Nevertheless, this does not
always match the needs of industry for productivity. Usually,
manufacturing systems are required to admit concurrency and
parallelism for multiple types of items, which substantially
complexifies modeling tasks. Next, we incrementally illustrate
how difficult the task of modelingE can become. We start by

a case (E1) that admits 1 single type of workpiece and then we
show cases for more than one type. An automaton modeling
E1 is presented in Figure 4.

E1:
sC

fC

fCsA1

fA1 s1

Fig. 4. Specification model for the separation of a single type of workpiece

SpecificationE1 prevents the actuatorA1 to be activated
(event sA1) before a small workpiece is identified on the
conveyor (events1) and the conveyor is positioned correctly
(event fC). We remark that the conveyor position is not
controlled by modeling. This is coordinated at implementation
time using encoder settings. We just take advantage of its
events start/stop.

Note that this control logic involves a few states and it
can be trivially expressed by the engineer. However, if we
slightly reconfigure the control objectiveE, it can be shown
that the modeling becomes substantially more complex. In
order to analyze this impact, assume that two different types
of workpieces can now be admitted in the system, small and
regular. Small workpieces are still stored in the bufferB1 while
regular workpieces are separated inB2. Now, the modelE1 is
extended to absorb this new control requirement and the result
is the specificationE2 shown in Figure 5.

E2:

sC

sC

fC

fC
fC

fC

fC

fC

sA1

sA1

sA1

sA1

fA1

fA1

fA1

fA1

sA2sA2
sA2

sA2

sA2

fA2

fA2

fA2

fA2

fA2

s1s1 s2

s2

Fig. 5. Specification model for the separation of two types ofworkpieces

SpecificationE2 prevents the actuatorA1 to be activated
(event sA1) before a small workpiece is identified on the

ICCEEg: 1 (14) – Dezembro 2016 20

conveyor (events1) and the conveyor is positioned correctly in
front the actuatorA1. In parallel, it also prevents the actuator
A2 to be activated (eventsA2) before a regular workpiece
is identified on the conveyor (events2) and the conveyor is
positioned correctly in front the actuatorA2.

For example, after a stringsCs1s2fCsCs1fC all events
(belonging to the model) are disabled, exceptsA1 and sA2.
This means that, after the system identifies a regular and small
workpiece, and both are positioned in front the correct buffer,
the only action possible is the actuators activation.

It is conceivable that the modeling ofE2 is substantially
more complex that the previous specificationE1. In fact, E2

deals with the possibility of workpieces arrive in different
sizes, in different orders. It also admits that after a workpiece
arrives, another may or may not arrive and thus the conveyor
has to behave differently. It turns out that mapping all possible
combinations directly in the specification model becomes a
nontrivial engineering task.

The number of states could be used to compare the models
E1 andE2 and to dimension modeling effort. While the first
involves only 5 states, the second requires to structure 22
states. Remark that this modeling task is not systematic as for
example it is to express a buffer behavior. On the contrary,
this construction requires an intricate reasoning about the
concurrent nature of the events.

Assuming that a third type of workpiece was to be admitted
in the system, a possible specification modelE3 would require
72 states to equivalently replace the 22-automatonE2, and so
on. Such complexity would become even more remarkable
if the plant was to be modified in order to embody new
components. The presented example, for instance, has support
to also separate workpieces according to the material they
are made, which has been prevented in this paper to keep
the example illustrative. We remark that this non-systematic
work depends exclusively of the engineer in order to map
all possible contexts of the system, which can be a barrier
for a control solution to be derived using FA as modeling
foundation.

From the compositionK = G ‖E2 we obtain an automaton
with 44 states when two different types of workpiece are
placed on the conveyor and separated by the control system.
This model represents the desired behavior of the system when
it is under control and it is used as the input for synthesis
algorithms in order to ensure minimally restrictive and non-
blocking behavior.

Next we present an alternative to the use of AF in mod-
eling. It is shown that engineering effort can be substantially
reduced while the same control objectives can be expressed.
A methodology to the use of this approach on FMS control
problems is also introduced.

IV. FMS EXTENDED MODELING

Sometimes, modeling manufacturing processes using ordi-
nary automata may become a too much complex task. By
nature, FA are limited in expressiveness, particularly when
dealing with data dependency, which requires to memorize

long sequences of events until a given modeling decision can
be taken. In this sense, the literature has extended FA in several
ways to simplify the automatic control of FMSs. Timed [9],
[10], modular [11], [12] and refined [13], [14] extensions, for
example, have shown to be useful to simplify control synthesis.
In this paper, we are more concentrated on the previous step,
that is, on the modeling that enables for automatic control.

This section subsumes results in [15], [16], [17], [14] about
Extended Finite-State Automata(EFA), a particular version
of FA extended with formulas associated to transitions. A
formula is a logical structure implemented using variables and
constants. Avariable v is an entity associated with a finite
domaindom(v) and an initial valuev◦ ∈ dom(v).

The set of all variablesvi, i = 0, · · · , n is denoted byV =
{v0, . . . , vn} and the domain ofV is denoted bydom(V) =
dom(v0)× · · · × dom(vn), i.e., the domain ofV is a set that
combines all domains of individual variables. An element from
dom(V) is written asv̄ = (v̄0, . . . , v̄n) ∈ dom(V) with v̄i ∈
dom(vi) and it is called avaluation, i.e., a valuation is a
structure that assigns to each variablev ∈ V a value belonging
to its domain.

For example, letV = {a, b, c} be a set of variables with
dom(a) = dom(b) = dom(c) = {0, · · · , 10}. A possible
valuation (in the deterministic case) fordom(V) could be, for
example,(0, 0, 0), which is also the initial valuation. Another
could be (2, 7, 1), etc. For Boolean variables, a valuation
assigns onlytrue or falsevalues.

A second set of variables, callednext-state variablesand
denoted byV ′ = { v′ | v ∈ V } with dom(V ′) = dom(V), is
used to describe how variables are updated by transitions.

For example, letx be a variable with domaindom(x) =
{0, . . . , 5} and initial valuex◦ = 0. A transition with update
x′ = x + 1 changes the variablex by adding1 to its current
value, if it currently is less than5. Otherwise (ifx = 5) the
transition is disabled and no updates are performed. Another
possibility is to write the formulax′ = min(x+1, 5), in which
case the transition remains enabled whenx = 5. The update
x = 3 disables a transition unlessx = 3 in the current state,
and allows all possible next-state values ofx. Differently, the
updatex′ = 3 always enables its transition, and the value ofx

in the next state is forced to be3.
Formally, an EFA is described by a 6-tupleMv = 〈Σ, V,

Q,Q◦, Qω,→〉, where:

• Σ is the alphabet of events;
• V = {v1, . . . , vn} is the set of variables;
• Q is the finite set of states;
• Q◦ ⊆ Q is the set of initial states;
• Qω ⊆ Q is the set of marked states;
• → ⊆ Q × Σ × F × Q is the state transition relation,

whereF is the set of Boolean formulas overV ∪ V ′.

The termx
σ:p
→ y denotes the presence of a transition inMv,

from statex to statey with eventσ ∈ Σ and updatep ∈ F .
An EFAMv can also be interpreted (unfoldedinterpretation)

as an ordinary FAG = 〈Σ, QG , Q
◦

G
, Qω

G
,→〉 where:

• QG = Q × dom(V);

ICCEEg: 1 (14) – Dezembro 2016 21

• Q◦

G
= Q◦ × {(v◦1 , . . . , v

◦

n)};
• Qω

G
= Qω × dom(V);

• → is such that(x, v̄)
σ
→ (y, v̄′) for v̄, v̄′ ∈ dom(V), if

there existsx
σ:p
→ y such thatp(v̄, v̄′) = true.

The unfolded state setQG includes the values of the variables
as part of each state. The unfolded transition relation is defined
based on the transition relation ofMv, by taking into account
the conditions imposed by the updates on the variable values.
The unfolded transition relation is extended to strings inΣ∗

by (x, v̄)
ε
→ (x, v̄) for all (x, v̄) ∈ QG and (x, v̄)

sσ
→ (x′′, v̄′′)

if (x, v̄)
s
→ (x′, v̄′)

σ
→ (x′′, v̄′′) for some(x′, v̄′) ∈ QG .

We denote byMv

s
→ (x, v̄) that the state(x, v̄) can be

reached from the initial state ofMv. Finally, the open-loop
behaviorand themarked behaviorof Mv are the languages

L(Mv) = { s ∈ Σ∗ | Mv

s
→ (x, v̄) ∈ QG } ;

Lω(Mv) = { s ∈ Σ∗ | Mv

s
→ (x, v̄) ∈ Qω

G } .

Composition of EFA is well defined from the standard
synchronous composition of FA [14]. The only difference is
that now formulas are combined by conjunction. Thus, the
same notation‖ is used to refer to both cases, as it is clear
to the context. Given two EFAAv = 〈ΣA, VA, QA, Q

◦

A, Q
ω
A ,

→A〉 andBv = 〈ΣB, VB, QB, Q
◦

B, Q
ω
B ,→B〉, the synchronous

compositionof Av andBv is Av ‖ Bv = 〈ΣA ∪ ΣB, VA ∪ VB,

QA ×QB, Q
◦

A ×Q◦

B,→〉, where:

• (xA, xB)
σ:pA∧pB

−−−−−→ (yA, yB) if:
σ ∈ ΣA ∩ ΣB, xA

σ:pA
−−−→A yA, andxB

σ:pB

−−−→B yB;
• (xA, xB)

σ:pA
−−−→ (yA, xB) if:

σ ∈ ΣA \ ΣB andxA
σ:pA
−−−→A yA;

• (xA, xB)
σ:pB

−−−→ (xA, yB) if:
σ ∈ ΣB \ ΣA andxB

σ:pB

−−−→B yB.

That is, shared events between two EFA are synchronized,
while other events are interleaved. In addition, the updates are
combined by conjunction. Determinism can also be defined to
an EFAMv = 〈Σ, V,Q,Q◦, Qω,→〉 as follows:

• Q-determinism: when |Q◦| = 1 and, for any two transi-
tions x

σ:p1

−−−→ y1 andx
σ:p2

−−−→ y2 implies y1 = y2, for all
x, y1, y2 ∈ Q, σ ∈ Σ andp1, p2 ∈ F .

• V-determinism: when (x, v̄)
σ
→ (y, w̄) ∧ (x, v̄)

σ
→ (y, w̄′)

implies w̄ = w̄′, for all x, y ∈ Q, σ ∈ Σ and v̄, w̄,

w̄′ ∈ dom(V).

In words, Q-Determinism of EFA requires (i) a single
departure point (initial state) and (ii) two any transitions
with the same event always lead to the same state, does
not matter how many satisfiable updates are conjuncted. In
EFA, Q-Determinism makes more sense when combined to
V-Determinism, i.e., when besides reaching the same state,
transitions with the same event also update variables deter-
ministically. In this paper, we assume determinism of variable
assignments and states.

V. A STEP-GUIDE TO THE USEAFES

For many practical problems, it may be easier to model
constraints for a DES plant using a logical formula than

structuring a large automaton. In general, this is in more tuned
to the human perception about the problem to be handled. This
approach simply imposes a control rule without requiring to
memorize long sequences of events in the system as, in the
case of EFA, memory is stored in variables, which are part of
the plant behavior.

However, in order to be possible restricting a DES plant
by simple formulas, using variable values, such values have
to first be properly addressed by the plant model, i.e., EFA
modeling the plant has to express the semantic of updates
appropriately on variables. This includes a sequence of tasks
which are not exactly systematic. In fact, this is an engineering
task that depends on manual effort. Even though, some steps
emerge naturally to the engineer and they are characterized
next, attempting to somehow help the designer to address
complex modeling by EFA.

(i) Identifying variables: Including a variable to a system
model is justified face a modeling problem. As a variable
provides more information about the system, it tends to
facilitate modeling tasks. To identify which variable the
system needs, one has to identify first which event, when
associated to the variable, can update it so that necessary
(extra) information on the system is provided.

(ii) Defining each variable domain: Identified which variable
the system model needs, one has to define the structure
of such variable. In this paper, we assume that variables
assume only finite domains. Properly defining a variable
domain implies to recognize which and how many values
will be possibly assigned to the variable. For example, if
a variable is Boolean, then the domain belongs to the set
{0, 1}.

(iii) Designing control specifications: Once a variable is de-
clared and its domain is defined, one already can use
its values to design control specifications. In EFA, this
is done by simply embedding constrains on transitions
labeled by a given event. Constraints have the form
of logical conditions, which is also known asguards.
Summarizing, a control specification is now expressed
by a logical formula embedded on a transitions labeled
by the event that one aims to control.

(iv) Identifying additional variables: Sometimes, declaring a
variable directly simplifies a given modeling task, but
this indirectly implies in declaring additional variables.
This situation occurs when the value to be assigned to a
variable depends on another value, from other variable.
In FMSs, for example, this is a common situation that
emerges from processes that include data dependency
among components of a manufacturing line.

(v) Enriching the plant model: The final step to properly
combine variables to automata consists in implementing
their updates. Remark that the whole framework is useless
without this step. In fact, any constraint would never
reach its purpose if the variable would remain unchanged.
A variable update is a logical formula similar to a guard,
which is also embedded on a transition. However, instead

ICCEEg: 1 (14) – Dezembro 2016 22

of testing a condition on the occurrence of an event, a
update replaces a variable value by another value. In this
way, an update is always executed when the event over
which it is implemented occurs, and it never disables
the transition. Remark also that, while a constraint is
implemented on a specific model to form the specification
version, an update depends on the events of the plant. For
that reason, updates are naturally implemented as part
of the plant model, the formulas are associated to the
transitions of the plant and variable values become part
of the plant behavior.

The activity diagram in Fig. 6 illustrates the main idea of
the proposed step-guide.

Identify variables Define each
variable domain

Design control
specifications

Identify additional
variables

Enrich the plant
model

[Identifed]

[Not identifed]

Fig. 6. Activities composing the proposed step-guide

Remark that, as soon as a variable is target as “necessary” to
a modeling task (step (i)) and its domain is defined (step (ii)),
the specification model can be already designed (step (iii)). In
fact, the engineer is in this case anticipating that such variable
value will be available whenever it is required. It remains
so to make this variable value in fact available in the plant
model to serve (to be tested by) the specification when it
requires. This is achieved in the step (v), whose construction
eventually depends on another variables (step (iv)) in order
to complement a given memory to be composed. It is usual,
in EFA modeling, that every component in the system is
represented by a particular variable. This allow the component
to start a new job after each job is finished, without waiting
for control decisions.

Section V-A illustrates the use of the proposed step-guide
by an example.

A. An Improved Solution to the Example

This section applies the step-guide proposed in Section V,
in conjunction to the concepts described in Section IV, to
reproduce the modeling of the example illustrated in Section
III. For the sake of clarity, we consider just a case where two
types of workpieces are received in the system (specification
E2), although any finite number of types can be recognized
by the system without loosing generality.

The goal to be pursued next is to derive a coordination
model for the example, such that it is equivalent to the results
in Section III, however it is designed in such a way that
modeling effort is reduced. We consider number of states as
a measure for modeling effort, which seems to be practically
reasonable.

1) Step (i):: The first action to design the example using
AFE, according to the step-guide (i), is to identify possible
variables which, when combined to the system model, could
provide useful information to simplify a given modeling task,
in this case let us assume that our modeling problem is
to design specificationE2. Note that modelingE2 requires
information about the type of each workpiece positioned on
the conveyor, in front the actuator. This allows to define
whether or not to activate the actuator. In order to provide
such information, we define two variables,p1 and p2, each
representing the respective sector of the conveyor, storing
information about the type of workpiece that is currently
occupying such sector.

2) Step (ii):: The second action according to the step-guide
(ii) is to determine the domain of each variable. Each value
possible in a variable domain is associated to a particular
type of workpiece present on the conveyor. Remark that the
combination of all variable values define the state of the
system. In the example, each variable is declared with a
domain 3, i.e.,dom(p1) = dom(p2) = {0, 1, 2}, such that
the domain 0 is used as initial value, i.e.,p◦1 = p◦2 = 0,
and domains 1 and 2 are used respectively to identify a
workpiece of the type 1 and 2. Thus, the meaning of variables
assignments is as follows:

• pi = 1: there is a workpiece of the type 1 on the sector
i of the conveyor;

• pi = 2: there is a workpiece of the type 2 on the sector
i of the conveyor; fori = 1, 2.

3) Step (iii):: Now, we take advantage of the variable values
to design a specificationEv that equivalent modelsE2 (see
Figure 5), however in a simpler fashion. Since information
on the workpieces are now stored in variables,E2 can be
designed in such a way that traces of events no longer need to
be memorized, i.e., coordination is now imposed by constraints
implemented on the variable values. This is modeling task
that can naturally be conducted in a modular fashion. For
the example,E2 can now be expressed by the set of models
described as follows, which are then composed afterwards to
form Ev:

• E1a
v , E1b

v andE1c
v : Conveyor, sensorS1 and sensorS2

are sequenced, in this order;
• E2

v and E3
v : Conveyor and actuators are mutually ex-

cluded, i.e., conveyor is disabled when a workpiece typei

is positioned inPi, i = 1, 2, and actuatorsAi are disabled
when conveyor is working;

• E4
v : ActuatorsA1 andA2 are disabled while there is no

workpiece on the respective position of the conveyor.

The textual version of each specification can be expressed
by the EFA shown in Figure 7.

SpecificationsE1a
v , E1b

v and E1c
v aim to control sensors

activation in sequence (1,2), but only after the conveyor moves
a workpiece in front of them. This is the way they behave in
the system and it has to be properly mapped by the models.

ModelE2
v was developed to ensure that the conveyor will be

activated only when there are no workpieces in front of their

ICCEEg: 1 (14) – Dezembro 2016 23

E1a
v :

fC

fC
fC

fC

fC

sC sC

sC

sC

sC

s1 s1

s1

s1
s2

s2

E1b
v : E1c

v :

E2
v :

fA1

sA1
sA1

p1! = 1 E3
v :

fA2

sA2

sA2

p2! = 2 E4
v : p1 == 1

p2 == 2

Fig. 7. Modular version of the specificationEv = E1a
v ‖ E1b

v ‖ E1c
v ‖ E2

v ‖ E3
v ‖ E4

v , modelingE2 with EFA

respective buffers. Plus, the actuator cannot be activatedwhile
the conveyor is enabled. For that, the eventsC is enabled in
the initial state as long as the conditionp1! = 1 is evaluated to
true, which means that there is no workpiece in front ofA1.
In addition, this model ensures that activation of the conveyor
and actuatorA1 is mutually exclusive, i.e., once activated the
actuator (eventsA1), the conveyor can only be enabled after
the actuator finishes (eventfA1). The same idea holds for
specificationE3

v mutually excluding conveyor and actuatorA2.
SpecificationE4

v is responsible for effectively separating the
workpieces to the correct buffer. For that, it tests the guard
p1 == 1 with the eventsA1, andp2 == 2 with the eventsA2.
When any of these guards is evaluated totrue, this means that
there is a workpiece of the typei, in front the positioni, for
i = 1, 2 and, therefore, the actuator is allowed to start.

An important remark to be pointed out is that EFA specifica-
tions impose control rules individually, without concerning to
the other constraints.E4

v , for example, controls the separation
of workpieces without concerning to mutual exclusion or other
aspects of coordination. Note that this differs from FA mod-
eling. See Fig. 5, for example, where separating a workpiece
requires to trace it from the start point to the control action
point, considering all possible intermediate combinations of
workpieces in the system (including empty positions in the
conveyor). This memory has to be designed by the same FA.
In EFA, differently, such memory is stored in variables, which
imposes no similar burden to the designer. Summarizing, for
practical purposes EFA specifications only make sense in
conjunction, but they can be designed modularly.

4) Step iv:: Now, we define the final setV of variables.
So far it has been defined 2 variables,p1 and p2, and this
has been enough to model the specificationEv. However,
it remains to be analyzed whether or notp1 and p2 can be
properly updated by the plant without no additional variable
modeling the conveyor.

Observe that, in order assign correct values top1 and p2,
one has to trace each workpiece since it arrives in the system.
From the process in Fig. 2, workpieces arrive in the positionP0

of the conveyor. Thus, in order to assign the proper workpiece
identification top1 andp2, on has to know the identification

itself, which is done by the sensors inP0.
Consider now to define a complementary variablep0 which

receives workpieces identification from the sensors and trans-
fers this top1 and p2 when the conveyor moves. So, now,
the new set of variables is given byV = {p0, p1, p2}. By
revisiting the step (ii) (see step-guide interaction in Fig. 6) we
definedom(p0) = dom(p1) = dom(p2) = {0, 1, 2} and also
p◦0 = p◦1 = p◦2 = 0, such thatp0 = 0 indicates that there is
no workpiece on the sector0 of the conveyor; andp0 = 1 or
p0 = 2 indicates that there is a workpiece of the respective
type 1 or 2 on the sector0 of the conveyor.

5) Step v:: The final step of our example is to enrich the
plant model with a logic that updates variables so as to follow
the system as it evolves. This step is actually which impose
semantic value to variables and allows variable values to be
tested by constraints. Updates are implemented on transitions
of the plant model and are responsible to memorize every
possible state of the system. For the example, we propose a
semantic of updates as shown in Fig. 8.

G1
v:

s1
p0 = 1

G2
v:

s2

p0 = 2

G3
v:

fA1

sA1

p1 = 0

G4
v:

fA2

sA2

p2 = 0

G5
v:

fC

sC

p0 = 0
p1 = p0
p2 = p1

Fig. 8. EFA versionGv = ‖5
i=1

Gi
v of the plant model

EFA G1
v andG2

v express the behavior of the sensors that
identify the type of each workpiece and store such identifica-
tion in the variablep0 which represents the positionP0 of the
conveyor.

Then,G3
v andG4

v model the actuatorsA1 andA2, respec-
tively, and they are composed by the eventsstart (sA1 and
sA2) andfinish (fA1 andfA2). Whenever an actuator finishes,

ICCEEg: 1 (14) – Dezembro 2016 24

the value of the respective variable (p1 or p2) is reset to0,
meaning that the workpiece has just been removed from the
conveyor and the respective position (1 or 2) is now empty.

Finally,G5
v models the conveyor behavior by the eventsstart

(sC) andfinish (fC). This model plays an essential role to the
example, as it is responsible to transfer the variable values
combination (including all positions and workpieces) froma
state to another of the system.

For example, when a workpiece is identified inP0, the
variablep0 receives its identification. Then, when the conveyor
is activated, it has to resetp0 in order to make the positionP0

ready to receive a new workpiece (updatep0 = 0). However,
the value carried byp0 cannot be lost when it is reset, i.e., it
has to be transfered previously top1 (updatep1 = p0). The
same idea applied to the updatep2 = p1.

In this way, historical records of workpieces can be kept
for all positions combined, in an appropriate computational
fashion. This facilitates parallel processing, besides toallow
taking control decisions anytime along the process execution
without having to structure large automata.

6) Example Overview::From the compositionKv = Gv ‖
Ev one obtains an EFA version for the system under control.
It can be checked (by comparing languages, for example) that
Kv has the same behavior asK, even though it has been
designed by automata with at most 3 states, whileK contains
a model with 22 states. Another way to compareKv to K is
by generating its ordinary version, i.e., its FA version. Both
tests are supported by automated tools such asSupremica[7].

Remark that the 3-state structures (worst case) inKv would
be the same for any number of workpieces to be manufactured,
or conveyor positions to be considered. In fact, the only
difference would be the variable domain and respective adjusts
on updates and guards, which is reasonably simple to be done.
On the other hand, the FA version of the same problem would
suffer with the state-space increasing whenever the process
expands. Furthermore, it is also valid to be mentioned that
complexity faced by combining long sequences of FA events
are now replaced by the implementation of formulas, which
is in general more tuned to the human perception and it is
modular fashion, differently from the conventional modeling
method with FA.

VI. CONCLUSIONS

This paper exploits an important limitation faced by engi-
neers when coordinating complex Flexible Manufacturing Sys-
tems using conventional theory ofLanguagesandAutomataas
modeling formalism. An example of a real system for which
an optimal coordination logic would depend on an intricate
structure of models is presented. Then, an advanced modeling
method based on variable values is presented, together with
a methodology to facilitate its adoption in industry. The
benefits of the approach, compared to the conventional theory,
is illustrated by the same example, where the coordination
problem is solved in a much simpler way.

Although the presented approach is illustrated by a partic-
ular case, we argue that it can be naturally extended to any

other real industrial process. One expects that the presented
approach can help to migrate theoretical results on modeling
and control synthesis to industry practices. This would allow
the development of advanced techniques and tooling to handle
large manufacturing systems through more concise and read-
able models, which is more tuned to industry profile.

We remark that, while extended automata are indeed helpful
to simplify modeling tasks, they actually do not reduce compu-
tational effort. In fact, variable values are implicit states, which
are taken into account for processing. In general, extended
automata are expected to be processed with equivalent cost
as conventional automata. We aim to present a more precise
analysis on computational complexity of extended automata
in our future research. Besides this, we also aim to generalize
the method to other modeling contexts in the future.

REFERENCES

[1] B. Esmaeilian, S. Behdad, and B. Wang, “The evolution andfuture of
manufacturing: A review,”Journal of Manufacturing Systems, vol. 39,
pp. 79 – 100, 2016.

[2] G. Chryssolouris,Manufacturing Systems: Theory and Practice, 2nd ed.,
2005.

[3] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Discrete Event Dynamic Systems, vol. 77, pp. 81–98, 1989.

[4] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems, 2nd ed. NY: Springer Science, 2008.

[5] J. E. Hopcroft, J. D. Ullman, and R. Motwani,Introduction to Automata
Theory, Languages and Computation, 2nd ed. Addison Wesley, 2001.

[6] L. H.R. and P. C.H.,Elements of the Theory of Computation, 2nd ed.
NJ: Prentice-Hall, 1998.

[7] K. Akesson, M. Fabian, H. Flordal, R. Malik, A. Vahidi,
M. Skoldstam, and G. Cengic,Supremica, 2014. [Online]. Available:
http://www.supremica.org/

[8] E. Tecnologia, “Manufacturing process xc241,”
http://www.exsto.com.br, accessed: 2016-08-01.

[9] B. A. Brandin and W. M. Wonham, “Modular supervisory control
of timed discrete-event systems,”IEEE Conference on Decision and
Control, pp. 2230–2235, 1993.

[10] S. Ware and R. Su, “Time optimal synthesis based upon sequential
abstraction and its application to cluster tools,”IEEE Transactions on
Automation Science and Engineering, 2016, to appear.

[11] M. H. D. Queiroz and J. E. R. Cury, “Synthesis and implementation
of local modular supervisory control for a manufacturing cell,” in Pro-
ceedings of the 6th International Workshop on Discrete Event Systems.
Zaragoza, Spain: IEEE Computer Society, 2002, pp. 377–382.

[12] R. Malik and M. Teixeira, “Modular supervisor synthesis for extended
finite-state machines subject to controllability,” in2016 13th Interna-
tional Workshop on Discrete Event Systems (WODES), May 2016, pp.
91–96.

[13] J. E. R. Cury, M. H. de Queiroz, G. Bouzon, and M. Teixeira, “Supervi-
sory control of discrete event systems with distinguishers,” Automatica,
vol. 56, pp. 93 – 104, 2015.

[14] M. Teixeira, R. Malik, J. Cury, and M. de Queiroz, “Supervisory control
of des with extended finite-state machines and variable abstraction,”
IEEE Trans. on Automatic Control, vol. 60, no. 1, pp. 118–129, 2014.

[15] Y. Chen and F. Lin, “Modeling of discrete event systems using finite state
machines with parameters,” inIEEE Int. Conf. on Control Applications,
Anchorage, 2000, pp. 941–946.

[16] M. Sköldstam, K.Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” in46th Conf. on Decision
and Control, 2007, pp. 3387–3392.

[17] L. Ouedraogo, R. Kumar, R. Malik, and K. Akesson, “Nonblocking
and safe control of discrete-event systems modeled as extended finite
automata,”IEEE Trans. on Automation Science and Engineering, vol. 8,
no. 3, pp. 560–569, July 2011.

