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Automatic Design of a Telescopic Amplifier Based
on Particle Swarm Optimization

Luiz Antonio da Silva Junior, Robson André Domanski, Anderson de Paula Fortes and Alessandro Girardi

Abstract—A fast and efficient design methodology for CMOS
operational amplifiers is mandatory when there is a reduced
time-to-market. In this case, the automation of this process
must be considered. However, the n-dimensional design space is
highly nonlinear and it is difficult to find an optimized solution.
In this context, we developed a tool for the automatic sizing of
analog integrated circuits, called UCAF. This tool uses artificial
intelligence (AI) techniques to explore solutions according to
design requirements. This paper presents the analysis of test
sets based on Particle Swarm Optimization (PSO) technique,
applied to the design of a telescopic operation amplifier in
0.18m technology, as well as a brief comparison with the
Simulated Annealing (SA) technique. The generated circuit
presented better performance when sized with PSO in terms of
area and dissipated power.

Index Terms—Optimization, Analog design, PSO.

I. INTRODUCTION

HE fast development of microelectronics in recent

decades enabled electronic circuits even more integrated.
Although most of the functions in integrated circuits are
for processing in the digital domain, the analog circuits are
required at the interface between the electronic system and
the “real world” [1].

Both the input of a circuit and its output are usually
analog, then the signal is transmitted and / or originated
by sensors, antennas and other means of transmission. The
analog circuits are widely used in systems applications, such
as telecommunications and robotics [1], [2].

With the increased integration of these circuits, the analog
circuit design becomes more increasingly complex, making it a
challenging and time-consuming part. As it is required to size
each device that compose the circuit, and the design space is
highly non-linear, this process is considered a bottleneck of
the project in a mixed-signal circuit [3]-[5].

Roughly, the analog circuit design is usually composed by
two main steps. The first step is the choice of one the several
possible circuit architectures and topologies. The second step
is to determine the values of circuit parameters (e.g., resistor
and capacitor values, geometries and devices, such as gate
length of the width MOS transistors) [4], [6].
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Thus, it is clear that the development of CAD (computer
aided design) tools is required to handle the complexity of
analog circuit design scale in an acceptable time, making
automatic scaling analog circuits an important research topic
for two decades [2], [4]-[6].

Usually the design of an analog circuits needs several
iterations, mostly based on trial and error and electrical sim-
ulations. However, combinatorial computational optimization
methods may be used to reduce design time and optimize
circuit parameters [6].

Algorithms based on metaheuristics and populations have
been widely used for solving highly-dimensional non-linear
searching problems. It is very difficult to find optimal solutions
in these problems, because the design space is very large and
requires high computational effort. Examples of optimization
heuristic algorithms are Particle Swarm Optimization (PSO),
Simulated Annealing (SA) and Genetic Algorithms (GA),
which can be easily adapted for modeling different applica-
tions.

The analog circuit sizing can be modeled as an optimization
problem by defining a cost function to be minimized. This cost
function can be a weighted sum of circuit performance metrics
(for example, voltage gain, dissipated power, etc). The design
free variables are the gate length (L) and width (W) of the
transistors that compose the circuit.

In analog circuits, each transistor must be sized separately,
although individual performance affects the overall response
of the circuit. An automatic design methodology must consider
the characteristics of the entire circuit in order to guarantee
the achievement of performance requirements [3].

Some previous works describe strategies and methodologies
for dealing with this problem [7], [8], [9], [10], [11].

In this context, we propose an automatic synthesis procedure
for basic analog building blocks which can size transistors
dimensions W and L in a short design time using ordinary
computational resources.

We developed a tool, called UCAF, for automatic sizing of
analog circuits considering yield optimization [3]. This tool
transforms the analog sizing problem into an optimization
problem, exploring the design space through meta-heuristics
such as Simualted Annealing (SA) and Genetic Algorithms
(GA) and the technique discussed in this work - Particle
Swarm Optimization (PSO). PSO is a population-based global
optimization algorithm based on the simulation of the social
behavior of birds within a flock [12]. This algorithm belongs
to the family of Swarm Intelligence (SI) based optimization
techniques. The methodology in PSO is to use a swarm of m
particles that move through the design space in the direction of
the global minimum. Some previous works described strategies
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and methodologies for dealing with the PSO [13]-[16]. The
cost function evaluation is performed by SPICE electrical
simulation. The cost function includes a set of specifications
to be optimized and a set of constraints to be reached.

This paper is organized as follows: Section II presents
the circuit design methodology; Section III presents the PSO
heuristics; Section IV shows the design results for a Tele-
scopic operational amplifier; finally, Section V presents some
concluding remarks.

II. DESIGN OPTIMIZATION METHODOLOGY

The developed tool is based on a methodology for the design
of analog integrated circuits via optimization techniques using
electrical simulation for evaluation. This methodology is based
on the definition of a cost function that models the sizing
problem of an specific analog block in a generic optimization
problem. Fig. 1 demonstrates the implemented automatic de-
sign flow. The optimization method receives random values
as initial input, the design requirements and the process
technology parameters used for the design. The optimization
algorithm assigns the values for the circuit variables on
each iteration. The cost function is evaluated by electrical
simulations over different testbenches for extracting circuit
performances. The optimization methodology performs the
process until satisfying an arbitrary stop criterion.

| Initial Solution

‘ Calculation of

p

| Design Method of specifications
| Requirements optimization ‘ T ‘
valuation function
Technology l

p
Sized circuit
\

Fig. 1. Basic UCAF automatic design flow

The circuit electrical characteristics are modeled in a cost
function, which is implemented as an equation in terms of
circuit variables. The electrical characteristics may be the
power consumption, the circuit gate area, the voltage gain, etc.,
or even a combination of these. The minimization of the cost
function is performed by heuristics with values provided by
electrical simulations through an external electrical simulator.

The cost function used in this work is given by Eq. 1. In this
equation, O, (X) is the circuit n-th specification, Cy,(X) is
the m-th constraint, and w,, and w,,, are the weights (weighting
factor) for the objectives and constraints, respectively. To
choose which specifications are optimization targets and which
one are constraints, the tool receives the configuration of each
of the specifications given by the designer.

N M

fo=> wn.0n(X) + > wm.Cpn(X) (1)
n=1 m=1

Figure 2 shows some modular functions which represent the

way that UCAF tool is implemented and organized. According

to [3], using modularity we can have a high degree of

configurability because each function can be substituted by
a similar one without loosing functionality. Any module can
be changed independently of the remaining functions.
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Fig. 2. UCAF Modular Functions

The main function is the ”Core” module, and it is responsi-
ble for creating and organizing a new design, creating design
folders, setting the modular functions, writing the simulation
file and performing other important tasks.

The interface between the design and the fabrication tech-
nology is made by the function "Manufacturing Technology”.
The goal of this function is to read and configure the parame-
ters of simulation models from the design kit provided by the
foundry.

The “Topology Library” function contains all the analog
blocks previously inserted in the tool which are saved in a
cell library. These cells can be reused for different design
specifications.

An optimization algorithm that will guide the design space
exploration is implemented in the “Optimization” function.
More details about the optimization algorithm used in this
work will be given in Section III.

The Cost Function already mentioned and described by
Eq. 1 is implemented in the ”Cost Function” which has the
goal to represent the design as a single-objective minimization
problem.

Finally, the “Electrical Simulation” and ”Specification”
functions are both necessary to measure the values of the cir-
cuit specifications, thereby the cost function can be evaluated.

The choice of the optimization algorithm is an important
factor for the quality of the optimal solution in an optimization
problem. SA was implemented previously in the UCAF tool
[3]. This work describes the implementation of the same
problem using PSO.

III. PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization algorithm is an evolu-
tionary technique, and was inspired by the social behavior of
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birds [17]. PSO is based on studies in artificial life and social
psychology, as well as in engineering and computer science.
It utilizes a population of individuals, referred to as particles,
flying through the hyperspace with some initial velocity. In
each iteration, the velocities of the particles are adjusted taking
into account the best historical position (global best) of the
particles and their best neighborhood position (local best).
These positions are determined according to a predefined func-
tion fitness [18]. Then, the movement of each particle evolves
naturally to an optimal or near-optimal solution. Therefore,
PSO is an heuristic proper for the searching of global and
local optimization of non-linear systems.

Generally, in population-based search optimization methods,
it is necessary a high number of particles in the first search
step, thus allowing the exploration of the full range of the
search space. On the other hand, during the latter part of the
search, when the algorithm converges to an optimum solution,
the fine adjustment of the solutions is important to set the
global optimum.

Therefore in optimization methods, a proper control of
global exploration and local level is crucial to find the best
solution more efficiently. Shi and Eberhart [19] introduced the
concept of inertial weight in the original version of PSO in
order and balance local and global search for the optimization
process. The mathematical representation of this concept is
given by Eq. 2.

(MAXITER — iter)

w = (winitial_wfinal)* MAXITER +wfinal (2)
Where:
w inertia coefficient
Winitial initial value of the inertia.
Winal final value of the inertia.
MAXITER  maximum number of iterations.
iter current iteration number.

Through empirical studies, Shi and Eberhart [20] found that
the optimal solution can be improved by varying the value of
0.9 at baseline to 0.4 at the end of the study for most problems.

This modification of the original PSO brought changes in
the formula so that the calculated speed is given by Eq. 3 [20].

vely (i 4+ 1) = wy x vely (i) + C1 % rand x (Pbest, — presents)

+C2 x rand * (Gbest, — present,,)

3)

Were:

velyg velocity of the particle x.

Wy inertia coefficient of particle x.

C1 and C2  cognitive and social acceleration constants.

rand random number in the range of [0, 1].

Pbest; best position of particle x.

Gbest best overall position.

presenty current position of particle x.

At each iteration, the position of the particle is updated as
follows:

present, (i + 1) = present, + vel,(i + 1) 4)

Here, ¢ is the current iteration and 7 + 1 is the next one.
The Algorithm 1 shows the pseudocode of the PSO algo-
rithm that we propose for the sizing of analog circuits.

Algorithm 1 Pseudocode of the PSO algorithm.

1: Generate initial population.
. Generate initial fitness
: Obtain initial values for Pbest and Gbest.
: function PSO
for x < MAXITE do
For each particle, compute objective function
Update Pbest and Gbest.
Evaluate the fitness of each particle. > Eq. 3
end for
end function

R e A A o
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It is important to remember that global search algorithms,
such as Simulated Annealing [21] are of great importance for
solving problems effectively and efficiently. However, the PSO
is implemented without such hybridization techniques, in order
to demonstrate that the mechanisms of social learning of PSO
alone may result in obtaining good solutions for nonlinear
optimization problems.

IV. APPLICATION EXAMPLE

As an design example, we performed the automatic design
of a Telescopic Operational Amplifier [22] in XFAB CMOS
0.18 um technology with Vpp = |Vsg| equal to 0.9V. The
technology also defines the minimum values of the circuit
dimensions, which are L = 0.8um and W = 0.22um . The
schematics of the amplifier is shown in Fig. 3.
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Fig. 3. Schematics of the Telescopic Amplifier.
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Eight transistors of the circuit must be sized, so that param-
eters like gate width (W) and length (L) of are obtained. Due
to the constructive form of the circuit, some equalities between
the transistors can be assigned. Thereby, the amplifier has the
following equalities: M1 = M2, M3 = M4, M5 = M6,
M7 = MS8. In addition to the sizing of the transistors to the
circuit design, the current source ;s , the Vp and Vn input
voltages must be scaled. So, this design consists of 11 free
variables: W1, L1, W3, L3, W5, L5, W7, L7, Ipj.s, Vn
and Vp.

The main specifications of this circuit are low-frequency
voltage gain (Av0), Gain-Bandwidth Product (GBW), slew-
rate (SR), phase margin (PM), common mode input range
(ICMR), silicon area and dissipated power.

In this methodology the optimization procedure has a cost
function according Eq. 1. The objectives of the cost function
are the minimization of power consumption and gate area. The
constraints are defined as AvO, GBW, SR, PM and ICMR.

In order to check the circuit performance, the optimization
process uses an interface with the external electrical simulator
Synopsys HSPICE®,

Through an AC, DC or transient analysis it is possible
to estimate the value of each specification of the circuit
simulating determined circuit testbench.

To measure the specifications of Av0, GBW, and the PM
it is necessary to perform an AC analysis using the testbench
presented in Fig. 4. The results of this analysis can be plotted
as a Bode diagram. The Av0 and GBW specifications can be
extracted through the gain curve. In the same way, from phase
curve we can obtain the phase margin specification.

Voo

n > Vout

+
T

VSS
Fig. 4. AC testbench configuration.

Fig. 5 shows the amplifier connected in a unity gain
configuration, which is used to obtain the ICMR specification.
In this case a DC analysis is performed and the input voltage
is varied from a minimum to a maximum level. Positive and
negative values of ICMR are obtained from the output when
the gain is linear.

Using the same ICMR circuit configuration we can measure
the response speed of an amplifier (Slew Rate). As shown in
Fig. 6, a step voltage is used as input in this simulation, and
through a transient analysis we can obtain the value of SR by
verifying the raise and fall rate of the output voltage level.

We conducted some tests to find the best configuration of
the PSO algorithm applied to this problem, as shown below.

First, we choose a value of 100 for the number of iterations
and we vary the population size from 10 to 240. The results
are shown in Fig. 7, Fig. 8 and Fig. 9.

VDD
+ Vout
Vin -
I~
Vss )
Fig. 5. ICMR testbench configuration.
Voo
+ \ Vout
Vin -
I~
Vss )

Fig. 6. SR testbench configuration.

For testing purposes we set a fixed value for the seed of the
random number generator (RNG) used by RAND function in
order to have the same random sequence for all test cases.
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Fig. 7. Values for cost function after 100 iterations according to population
size.

Analyzing the set of figures, where the size of the iteration
was chosen as 100, the best result is found when the population
size reaches the value of 100. At this point we find the lowest
value for the cost function, power dissipation and gate area.

Knowing the best population size, we can evaluate the
optimum number of iterations, which is the stop criterium
of the algorithm. Fig. 10, Fig. 11 and Fig. 12 demonstrate
the results for the optimized cost function value for different
iteration numbers. The number of iterations was varied from
10 to 240 for a fixed population size of 100. We consider again
the same random sequence for all test cases.

The analysis of the figures demonstrate that the cost function
value decreases considerably in about in 60 iterations. Beyond
this point, the cost function does not have a significant
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Fig. 8. Values for gate area after 100 iterations according to population size.
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Fig. 9. Values for power consumption after 100 iterations according to
population size.

minimization. Another important factor is that running more
iterations demands more computational time, thus resulting in
a significant increase in the cost of the algorithm.

To verify if PSO is dependent on the seed of the random
number generator, four new simulation runs were carried out,
each with a fixed size of 100 individuals and iterations ranging
from 10 to 240. Fig. 13 demonstrates the results.

This figure shows that the PSO algorithm has different
behavior for different values of seed. The final results for the
cost function is different for every case of tested seeds, but it
is possible to analyze which had the best result when the seed
value was defined as default (2°). Thus, the value set in the
seed also influence the final result of the cost function.

It is possible to compare the results obtained by PSO with
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Fig. 10. Values of cost function for a population of 100 individuals and
varying the number of iterations.
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Fig. 11. Values of gate area for a population of 100 individuals and varying
the number of iterations.
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Fig. 12. Values of power consumption for a population of 100 individuals
and varying the number of iterations.

the same optimization procedure performed by SA, which was
described in [3]. The values of the required specifications are
shown in the second column of Table I. The results obtained
by UCAF tool using SA and PSO are shown in the third and
fourth columns of this table, respectively.

The results obtained by using PSO presented a reduction
of 41.93% in dissipated power and 13.43% in gate area when
compared to the results obtained by using SA. The SA used
8,920 iterations, and, for purposes of comparison, PSO was
configured to have 9,000 executions. The final cost function
was reduced from 0.86 in the SA to 0.23 in the PSO algorithm.
It is possible to notice that both algorithms reached all the
required specifications.
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Fig. 13. Cost function value for a population of 100 individuals and varying
the number of iterations for different seeds of the random number generator.
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TABLE 1
SPECIFICATION RESULTS FOR THE DESIGN OF A TELESCOPIC USING
PSO AND SA.
Specification Required Value  PSO (this work)  SA [3]
Av0 (dB) > 60.00 63.90 62.88
GBW (MHz) > 2.00 4.71 3.50
PM (%) > 50.00 75.98 50.09
SR (V/us) > 5.00 5.01 5.76
ICMR+ (V) > 0.40 0.58 0.64
ICMR- (V) < -0.40 -0.71 -0.60
Pdiss (uW) Minimize 28.84 49.66
Gate area (um?) Minimize 1690 1957
Cost function Minimize 0.23 0.86

The values for the variables of the circuit are contained in
Table II. The second column shows the results of the values
for the variables of the circuit where the second column shows
the result obtained with the PSO, and the third with the SA.

TABLE 11
VALUES FOR THE CIRCUIT VARIABLES FOUND FOR THE TELESCOPIC
AMPLIFIER USING PSO AND SA.

Variable  PSO (this work) SA [3]

%1 27.75 pm 32.88 um
W3 26.68 pum 44.47 pm
Ws 16.78 pm 50.09 pm
W 46.99 pm 47.22 pm
Ly 10.00 pm 9.86 pum
L3 0.50 pm 1.75 pm
Ls 8.58 um 9.66 um
L7 8.72 pm 6.01 pm
IBias 16.02 A 29.65 pA
Vn 085V 0.86 V

Vp -0.85 V -0.86 V

V. CONCLUSION

The proposed methodology using PSO for the automatic de-
sign of analog integrated circuits presented better results when
compared to the same procedure using SA meta-heuristic. Both
algorithms achieved all the required specifications. However,
the circuit sized with PSO has a considerable improvement in
terms of dissipated power and gate area, with approximately
the same number of iterations. The proposed algorithm is
suitable for analog design, due to the fact that the convergence
of the final solution is not directly dependent on the initial
solution. Also, it requires small interference from the human
designer. As future work, we aim to implement a methodology
for estimating the process, voltage and temperature (PVT)
variations within UCAF, including yield prediction during the
optimization procedure.
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