
1

Investigating the Impact of Pruning on
Energy-Accuracy of Neural Networks

Thomas Fontanari∗, Leandro M. G. Rocha∗, Gustavo M. Santana∗, Guilherme Paim∗,
Eduardo A. C. da Costa†, Sergio Bampi∗

∗Graduate Program on Microelectronics (PGMicro) - Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre - Brazil

†Graduate Program on Electronic Engineering and Computing - Universidade Católica de Pelotas (UCPel)
Pelotas - Brazil

Abstract—Neural networks have been achieving state-of-the-art
performance in various problems, such as image classification
and natural language processing. They are, however, computa-
tionally expensive. With billions of parameters and requiring an
extensive amount of arithmetic operations, energy consumption
is, therefore, a hard requirement. One of the ways to approach
the energy problem is through pruning, a commonly used
technique in approximate computing that consists of zeroing
parameters given a specific rules. In this paper, we aim to
analyze the effects of pruning on energy consumption and
network accuracy. We apply an automated gradual pruning
(AGP) method to five different networks and test them using
the MNIST and CIFAR10 datasets. Our results show that energy
consumption can be substantially reduced while maintaining
and even improving accuracy levels; outcomes that cannot be
obtained through smaller analogous networks.

Keywords—Neural networks; Pruning; Energy consumption.

I. INTRODUCTION

Neural networks (NNs) always required a considerable
computational power to execute their algorithms quickly
and efficiently [1]. Since the inception of this field, scientists
sought techniques to both optimize the algorithms and
improve the underlying hardware to overcome the inher-
ent complexity of these algorithms. Deep neural networks
(DNN) have recently achieved state-of-the-art performance
in various tasks such as image classification [2] and natural
language processing [3]. These results however come at the
cost of increasingly higher computational power require-
ments and memory intensiveness. AlexNet [2] for instance
performs over 6 billions multiply-and-accumulate (MAC)
operations just to classify a single image. The end result
is high energy consumption derived mainly from memory
accesses, which hinders its use in embedded devices. In or-
der to overcome this problem, different approaches attempt
to reduce the size of the network model, e.g., by pruning
or using some form of quantization [4].

State-of-the-art neural networks require millions of pa-
rameters to describe an accurate model for classification
tasks. The majority of these parameters reside on the clas-
sifier, usually composed of fully-connected layers. However,
some connections in a NN have minimal impact on the
model accuracy. For instance, the AlexNet model requires

more than 200 MB of storage whereas the VGG-16 network
requires over 500 MB to store the network parameters [5].

Pruning is a technique that reduces the number of
memory accesses and computations in a NN by increasing
sparsity, i.e., the proportion of parameters in the network
that are equal to zero. MAC operations involving zeroed pa-
rameters do not need to be computed, nor the parameters
used need to be accessed. Therefore, this results in a lower
energy consumption per classification metric. Moreover, it
is also reasonable to expect effects in the accuracy of the
networks. The first approaches to pruning suggested using
second derivatives as a way of estimating the importance
of any given weight [6]. Recently, however, magnitude-based
pruning has been used since it is much easier to perform
in larger networks [7], and achieves comparable results.

In this paper we explore the effects of magnitude-based
pruning on energy consumption and network accuracy rate.
We train a group of LeNet [8] networks - LeNet5, LeNet-300-
100-10, LeNet-300-10, a variation of LeNet5 and a linear
classifier using the MNIST and CIFAR10 datasets. By ap-
plying the automated gradual pruning method introduced
in [9] to these pre-trained networks we achieve very high
sparsity levels while maintaining the accuracy rate. These
sparsity levels are used together with a model of an architec-
ture to run the networks in order to estimate the reduction
in energy consumption brought by pruning. Moreover, our
results show that similar reductions cannot be achieved by
analogous smaller but denser network models – that is,
analogous networks possessing the same number of non-
zero parameters as the sparse original versions –, since
the layer structure resulting from pruning cannot be repre-
sented in a smaller fully-connected or convolutional-based
NN.

The main contribution of this paper is an investigation
about the pruning techniques in NNs and its impact on
the energy-accuracy trade-off between five existing archi-
tectures, using two existing data-sets.

This work is organized as follows: Section II presents a
background about NNs detailing the pruning techniques.
Section III presents our experiments for energy-accuracy
trade-off consumption considering relevant pruning effects.
Finally, Section IV concludes the paper.

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 22�

Vinicius Menezes de Oliveira

2

II. BACKGROUND

This section begins by reviewing neural networks. We
then review the concept of pruning focusing on the au-
tomated gradual pruning (AGP) algorithm, which was used
in this work. Further information on neural networks can
be found in [4].

A. Neural Networks

A neural network (NN) is a composition of a set of smaller
units named neurons. A neuron produces an output y by
applying a non-linear function f (~x) to a weighted sum of
its inputs ~x. That is, y = f (~xT · ~w), where ~w is the weight
vector. This is illustrated in Figure 1. The computed output,
termed the activation of a neuron, is used as input to other
neurons in the neural network.

... Σ

w1

w2

wn

x1

x2

xn

f(x)
y

Fig. 1: Neuron used in neural networks.

Furthermore, a neural network is divided in layers, where
each layer is composed of N neurons. Fully-connected
layers are layers where each neuron has one connection
to each neuron in the previous layer. This is illustrated in
Figure 2, where a layer with 2 input neurons and 3 output
neurons is shown.

Input
Neurons

Output
Neurons

Fig. 2: Fully-connected layer. The arrows represent the
weighted connections between the input and output neu-
rons.

The first layer in a network is called the input layer,
where the outputs are simply the inputs to the network. The
last layer is named output layer and the outputs from its
neurons are the neural network outputs. A DNN classifying
gray scale images with 28x28 pixels, for instance, would have

784 neurons in its input layer and the output of each neuron
would be the value of its corresponding pixel. Moreover, if
there were 10 different classes of images, the network could
have 10 neurons in its output layer, where the activation of
each neuron could represent the probability of the input
image belonging to one of the 10 classes. In a deep neural
network there are also many layers between the input and
output layers and they are thus called hidden layers.

The way in which the weights are arranged from the
input neurons to the output neurons in a layer defines
its type. Two commonly used types of layers are the fully
connected (FC) and the convolutional layers, though many
others exist. In a FC layer, there is a different connection
between every input neuron and every output neuron, while
a convolutional layer is characterized by an arrangement
resembling the mathematical convolution operation.

A fully connected layer is shown in Figure 2. The value
of its output neurons is given by

yi = f (
M∑

j=1
wi j x j) (1)

where yi is the activation of the layer output neuron i ,
wi j is the weight from neuron j to i , x j is the activation
of the input neuron j , and M is the number of neurons
input neurons. Finally, f is a non-linear function, such as
the Sigmoid or ReLU functions. In other words, we simply
compute each neurons output given that their inputs are
the activation of the input neurons.

B. Convolutional Layer

Designing a network using only fully-connected layers
is not efficient as it does not scale well when the input
size grows [10]. For instance, the first hidden layer of 3-
layer MLP neural network using a 64×64 colored image as
input would lead to 12288 parameters to describe the neural
connection.

At a glance, restricting the number of connections among
neurons arises as a promising alternative. The visual cortex
in the human brain has several localized receptive fields
whose neurons only produce spikes when there are stimuli
with specific patterns or orientations [10]. Further, images
are considered to be stationary, meaning that the statistical
characteristics of a patch of that image will be the same
as any other patch within the same image. Therefore, it
is intuitive to think that a given local receptive field that
identifies a feature – like a diagonal line – can be applied
to several parts of an image.

A convolutional layer, as mentioned before, applies a
convolution to its inputs. Its weights are therefore the
elements of the kernel applied. Moreover, convolutional
neural networks (CNN) are, in general, used when inputs are
2D images with multiple channels (e.g., red, green and blue
components). We therefore consider a convolution between
a kernel with dimensions K xK and a H xW image I , both
with C channels, to be given by

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 23�

Vinicius Menezes de Oliveira

3

(w ∗ I)[x][y] =
C∑

c=1

K∑
i=1

K∑
j=1

w[c][i][j]× I [c][Ux + i][U y + j] (2)

where U is the stride, which in a typical convolution is
equal to 1. From it we note that x must be between 0 and
(W −K+U)/U while y must be between 0 and (H−K+U)/U ,
so that our image is indexed correctly. A convolutional
layer can be said to perform M different convolutions, thus
producing as output an image with M components, and its
computation is given by

O[u] = f (w[u]∗ I [u]) (3)

where u goes from 1 to M . Finally, a non-linear function
f is applied to each output.

Fig. 3: Example a 3×3 2D convolution [11]

C. Pruning Techniques

Pruning a neural network results in setting some of its
weights to zero, according to a given rule. In general, it is
possible to greatly reduce the number of weights since the
networks are usually over parameterized, thus containing
a lot of redundancy [4]. Pruning techniques were first
based on estimating the sensitivity of the error function
to the removal of the weights [12]. The optimal Brain
Damage [6] underlying idea was to use second derivatives
of the loss function to estimate which weights could be
removed. Overall, such techniques present better results
than magnitude-based pruning [13], i.e., deleting a weight
based on its magnitude. More recently, however, magnitude-
based techniques have been brought back since they are
much simpler to perform in large neural networks. In [7] a
method is proposed in which magnitude pruning is applied
in between training steps, thus allowing the network to
adapt itself and achieving great reduction in the number of
weights while maintaining the same accuracy. Furthermore,
pruning can also be combined with different network com-
pression techniques [5], or applied in a more structured way,
such as by removing entire filters in convolutional layers

[14]. Moreover, an energy-aware technique for pruning is
described in [15] and shown to obtain interesting results.

In [9] the authors present a method for performing
automated gradual pruning (AGP) in which sparsity levels
for each neural network layer is increased at each step from
an initial value si to s f according to the equation:

st = s f + (si − s f)

(
1− t − t0

n∆t

)3

(4)

where t0 is the first training step in which pruning occurs,
with a target sparsity level of st = si . n is the number of
pruning steps and the pruning frequency ∆t is the number
of training steps between each pruning. In order to achieve
the desired layer sparsity, the weights with the smallest
magnitudes are pruned.

The reasoning behind the equation, as explained by the
authors, is that since the equation incurs in a rapidly
increasing sparsity in the first steps and a slower increase
at the end phase, the great number of redundant weights
present in the initial phase will be promptly removed, while
the important weights remaining in the final phases will be
kept. Figure 4 illustrates this process, where the pruning
occurs at every training step, during 10 steps, aiming at a
final sparsity of 80%.

2 4 6 8 10
Training step

0

10

20

30

40

50

60

70

80

Sp
ar

sit
y

(%
)

Fig. 4: Sparsity over training step.

III. EXPERIMENTS EVALUATION AND DISCUSSIONS

In order to explore the effects of pruning on accuracy
and energy consumption in neural networks, we trained
and pruned five different networks – LeNet5, LeNet-300-10,
LeNet-300-100-10, LeNet-10 [8], and a variation of LeNet5
named here LeNet5-1C – using the MNIST and CIFAR10
datasets.

LeNet5 was the first DNN to achieve commercial suc-
cess, being used for digits recognition and containing two
convolutional layers. LeNet5-1C is similar to LeNet5, but
has only one convolutional layer, making it a slightly less
complex network. LeNet-300-10 is a simpler NN containing

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 24�

Vinicius Menezes de Oliveira

4

a single hidden layer; nevertheless, it should already posses
significant representational power compared to a linear
classifier. LeNet-300-100-10 contains one additional hidden
layer, which facilitates avoidance of local minima; and
finally LeNet-10 does not contain any hidden layers and
can be understood as a simple linear classifier – in fact, we
name it LeNet-10 here just to unify notation. The non-linear
function applied to every layer is the ReLU [4]. Moreover,
after each convolutional layer in LeNet5 and LeNet5-1C
there is a MaxPool layer.

The MNIST dataset consists of 28×28 grayscale images of
handwritten digits (10 classes), 60000 of which are training
samples and 10000 are test samples. Figure 5 shows some
examples of the images in the MNIST dataset. The LeNet
networks were first applied in this dataset [8]. CIFAR10 also
has 10 different classes – such as ’bird’ and ’airplane’ – of
32×32 colour images (3 components each), divided between
50000 training samples and 10000 test samples. Figure 6
shows some examples for the classes frog, car, deer and
truck.

Fig. 5: Examples of MNIST inputs.

Fig. 6: Examples of CIFAR10 inputs.

Tables I and II summarizes the structure for each net-
work. C (C , M ,K) means a convolutional layer with C input
components, M output components and K ×K 2D kernels
while FC (X ,Y) means a fully connected layer with X input
neurons and Y output neurons. The small differences in
shape between CIFAR10 and MNIST versions are conse-
quences of the different input images sizes.

TABLE I: Neural Networks shapes for CIFAR10.

Neural Network Shape

LeNet5 C(3, 6, 5)-C(6, 16, 5)-FC(400, 120)-FC(120, 84)-FC(84, 10)

LeNet5-1C C(3, 16, 5)-FC(400, 120)-FC(120, 84)-FC(84, 10)

LeNet-300-10 FC(3072, 300)-FC(300, 10)

LeNet-300-100-10 FC(3072, 300)-FC(300, 100)-FC(100, 10)

LeNet-10 FC(3072, 10)

Each network was trained for 15-20 epochs, using
Stochastic Gradient Descent (SGD) and backpropagation
[16] with a learning rate of 0.01 and a momentum of 0.9.

A. Performance and Sparsity Analysis

We applied the AGP method to the pre-trained networks
described earlier. For every network we performed an AGP

TABLE II: Neural Networks shapes for MNIST.

Neural Network Shape

LeNet5 C(1, 6, 5)-C(6, 16, 5)-FC(256, 120)-FC(120, 84)-FC(84, 10)

LeNet5-1C C(1, 16, 5)-FC(256, 120)-FC(120, 84)-FC(84, 10)

LeNet-300-10 FC(784, 300)-FC(300, 10)

LeNet-300-100-10 FC(784, 300)-FC(300, 100)-FC(100, 10)

LeNet-10 FC(784, 10)

pruning step after each training step during 15 training
steps, reaching a final sparsity level of 0.999 for each NN.
After each step, we evaluated the network using the test
set to find its accuracy at each sparsity level. The accuracy
using the MNIST and CIFAR10 datasets are shown in Figures
7 and 8 respectively. Specifically, we show that top-one
accuracy, which is the conventional accuracy, where the
model prediction must correspond exactly to the correct
class.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
sparsity

70

75

80

85

90

95

100

to
p1

LeNet5
LeNet5-1C
LeNet-300-10
LeNet-300-100-10
LeNet-10

Fig. 7: Relation between sparsity and performance using the
MNIST dataset.

As expected, the convolutional networks achieved higher
accuracy levels in all datasets, since they have a more
complex structure. Both of them presented similar results,
although with CIFAR10 the LeNet5-1C performed slightly
better. LeNet-300-100-10 however did not show much im-
provement over LeNet-300-10, even though it possess one
more hidden layer. LeNet-10 finished far behind, as ex-
pected since it has a much lower representational power
by acting as a linear classifier.

More importantly, we note how accuracy could be main-
tained while reaching a global sparsity of more than 95% for
all networks. Simply removing the smallest weights would
not achieve the same results; the training steps between
each pruning step are essential in order to allow the network
to recover from the losses. Moreover, every network could
in fact be improved by some level of sparsity. Table III
compares the best accuracy obtained through AGP with the
original accuracy of each network.

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 25�

Vinicius Menezes de Oliveira

5

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
sparsity

25

30

35

40

45

50

55

60

65

to
p1

LeNet5
LeNet5-1C
LeNet-300-10
LeNet-300-100-10
LeNet-10

Fig. 8: Relation between sparsity and performance using the
CIFAR10 dataset.

TABLE III: Comparison between original and sparse NNs.

MNIST CIFAR10
Neural

Dense Best Sparse Dense Best Sparse
Network

Acc. Sparsity Acc Acc. Sparsity Acc.

LeNet5 98.9 0.898 99.1 62.5 0.724 64.5

LeNet5-1C 98.9 0.733 99.0 67.1 0.457 67.7

LeNet-300-10 98.1 0.869 98.2 48.9 0.878 54.4

LeNet-300-100-10 97.9 0.815 98.3 52.1 0.820 54.6

LeNet-10 92.3 0.718 92.5 35.3 0.943 39.9

The accuracy gains with the MNIST dataset are marginal
for all networks. This is reasonable, since the performance
for this dataset is already very high. Accuracy with CIFAR10
however was greatly improved; LeNet-300-10 for instance
accomplished a performance approximately 5.5% higher.
These gains can be understood as a consequence of less
overfitting. Since the original networks have much more
weights than are necessary – as is shown by their tolerance
to pruning – they become prone to memorizing the training
set, which diminishes their ability to generalize well. When
we remove unnecessary weights, we force the network to
learn more general features and therefore reduce the chance
of overfitting.

Furthermore, noticing how the pruned networks needs
fewer weights than their original versions, one might ask
if we could simply use smaller analogous networks for
the same datasets and achieve similar results. In order to
answer this, we also trained a simplified version of the
LeNet-300-10 containing the same number of weights as
the sparse versions with accuracies of 97.6% and 53.4%
with MNIST and CIFAR10. For the MNIST dataset, there are
28×28 = 784 input neurons and 300 hundred hidden neu-
rons, accounting for a total of 235200 different weights in
its first layer. Through pruning we can reduce this number
to approximately 2432 non-zero weights while maintaining

accuracy. A fully connected layer with the same number of
weights and the same number of input neurons would need
to have only 4 neurons in its hidden layer. An analogous
calculation shows the same number of hidden neurons
for the CIFAR10 dataset. This ’LeNet-4-10’ thus contains
the same number of non-zero parameters as the sparse
LeNet-300-10, but it performs much worse. It achieved
a accuracy of only 25% and 68% with the CIFAR10 and
MNIST datasets, while the sparse network achieved 53.4%
and 97.6% respectively.

As suggested in [7], pruning allows the network to learn
not only the weights, but also in a certain sense the relevant
connections and therefore the structure of the layers. This
means not only that fewer weights are needed, but also that
new layer structures are learned. In other words, pruning
allows for weights arrangements that would otherwise not
be possible by considering only fully connected or con-
volutional layers with the same sizes. This explains the
differences in accuracy found before; although the ’LeNet-
4-10’ has approximately the same number of weights as
the sparse LeNet-300-10, it cannot reproduce the same
connections.

B. Energy Consumption Analysis

Different architectures for performing the network com-
putations would achieve different results concerning energy
consumption. In order to estimate the reduction from prun-
ing, we consider a simple architecture and dataflow similar
to the Non-Local Reuse described in [17], but without
inter-array reuse, i.e. the parameters for the multiply-and-
accumulate (MAC) operations are always obtained from
and saved in a global buffer. We also consider an energy
model from [17], based on experimental results using a
65 nm technology, where each MAC operation consumes
a normalized energy of 1 and each memory access to the
global buffer consumes 6 times it.

Assuming the described model, we can estimate the
trade-off between energy consumption and accuracy
through counting the total number of MAC operations.
From equations (2) and (3) we see that the number of MACs
per convolutional layer is given by

#M AC = n × (H −K +U)× (W −K +U)/U 2 (5)

where n = C ×K 2 × M is the number of weights in the
layer and H , K , U , C and M are as defined in Section II.
We note also that a fully connected layer can be computed
as a convolution by setting W = H = K , U = 1 and n to the
number of weights in the layer. Furthermore, the number
of MAC operations needed in a sparse layer network will
be given by #M AC Spar se = (1− spar si t y)× #M AC since
there is no need to compute a MAC where the weight is
equal to 0. Finally, the normalized energy consumption can
be derived by considering that each MAC operation needs
4 memory accesses: 3 for reading and 1 for writing. This
is important to note also that this is a very pessimistic
model in terms of parameters reusing and memory accesses.
Most architectures today would have different memory

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 26�

Vinicius Menezes de Oliveira

6

levels, such that the most accessed parameters could be
obtained with less energy consumption. Moreover, this is
also possible to design dataflows in order to increase the
possibility of parameters reuse [4], which can be used with
a hierarchy of memories in order to further decrease energy
consumption. Nevertheless, the model here serves well for
a first analysis.

Tables IV and V summarize the results for energy con-
sumption and accuracy with the MNIST and CIFAR10
datasets, respectively. The networks shown in the sparse col-
umn were chosen such that their accuracies were between
1% and 3% below that of the original networks.

Energy consumption was significantly reduced for all
networks, following the expectancy set by the high sparsity
levels. LeNet-300-10, LeNet-300-100-10 and LeNet-10 con-
sumed less than 0.5% the original values with the CIFAR10
dataset while LeNet5 and LeNet5-1C used approximately
13.7% and 27.3%. With MNIST, LeNet5, LeNet5-1C, LeNet-
300-10, LeNet-300-100-10 and LeNet-10 consumed respec-
tively 5.7%, 14.4%, 1.6%, 0.5% and 5.6% their original values.
In general we note that the reduction was smaller with the
convolutional networks, since the convolutional layer struc-
ture is such that there is already less parameter redundancy.
Their accuracies accuracy with CIFAR10 however remained
much higher than the other networks. Nonetheless it might
be justified to use a different network than a convolutional
one with the MNIST dataset if energy is a big constraint,
since the other NNs achieved a similar accuracy while
consuming much less energy.

TABLE IV: Results for accuracy and relative energy1 for each
neural network architecture with the MNIST dataset.

Original Best Sparse Sparse
NN

Acc. Energy Acc. Energy Acc. Energy
Architecture

[%] [×106] [%] [×106] [%] [×106]

LeNet5 98.9 7.04 99.1 1.23 96.1 0.402

LeNet5-1C 98.9 6.80 99.0 2.87 97.3 0.982

LeNet-300-10 98.1 5.95 98.2 0.778 96.8 0.0976

LeNet-300-100-10 97.9 6.65 98.3 1.23 96.6 0.0349

LeNet-10 92.3 0.196 92.5 0.0553 90.4 0.0111

1 Relative energy normalized with one MAC operation (Eq. 5).

TABLE V: Results for accuracy and relative energy1 for each
neural network architecture with the CIFAR10 dataset.

Original Best Sparse Sparse
NN

Acc. Energy Acc. Energy Acc. Energy
Architecture

[%] [×106] [%] [×106] [%] [×106]

LeNet5 62.5 16.2 64.5 6.77 60.1 2.22

LeNet5-1C 67.1 24.9 67.7 16.5 66.04 6.80

LeNet-300-10 48.9 23.1 54.4 2.83 46.8 0.0258

LeNet-300-100-10 52.1 23.8 54.6 4.28 50.1 0.0996

LeNet-10 35.3 0.768 39.9 0.0437 33.9 0.00177

1 Relative energy normalized with one MAC operation (Eq. 5).

IV. CONCLUSION

This paper investigates pruning effects on both accuracy
and energy consumption of neural networks. Specifically,
we compared five different NNs architectures using two
datasets, the MNIST and CIFAR10. Following similar re-
sults in the area, we showed that very high sparsity can
be achieved for all networks while maintaining accuracy
unchanged – results that cannot be obtained with smaller
analogous NNs. Moreover, we used a model for the com-
putation of the networks to show that these sparsity levels
lead to a significant reduction in energy consumption. We
note also that different energy cuts are expected depending
on the architecture and dataflow used, though the general
trend should remain.

In further research, we plan to explore additional model
architectures by considering more complex memory hier-
archies and dataflows. Moreover, we consider that it is
important to verify whether similar results could still be
obtained with more recent datasets and networks, which we
intend to verify in further works. Finally, this would also be
interesting to consider whether pruning has distinct effects
depending on the category of the input or on the metric
used. In order evaluate this, we plan to experiment using
different metrics for evaluating the class specific results
other than accuracy, such as the F-Measure.

ACKNOWLEDGMENT

The authors would like to thank IFRS and CNPq, Capes
and Fapergs Brazilian agencies for financial support to our
research.

REFERENCES

[1] J. Misra and I. Saha, “Artificial neural networks in hardware: A
survey of two decades of progress,” Neurocomputing, vol. 74,
no. 1, pp. 239 – 255, 2010, artificial Brains. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S092523121000216X

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[3] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. L. Seltzer,
G. Zweig, X. He, J. D. Williams et al., “Recent advances in deep
learning for speech research at Microsoft.” in ICASSP, vol. 26, 2013,
p. 64.

[4] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” CoRR, vol. abs/1703.09039,
2017. [Online]. Available: http://arxiv.org/abs/1703.09039

[5] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization
and Huffman Coding,” pp. 1–14, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[6] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[7] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning
both Weights and Connections for Efficient Neural Net-
works,” CoRR, vol. abs/1506.02626, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02626

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 27�

Vinicius Menezes de Oliveira

Vinicius Menezes de Oliveira

Vinicius Menezes de Oliveira

Vinicius Menezes de Oliveira

7

[9] M. Zhu and S. Gupta, “To prune, or not to prune: exploring
the efficacy of pruning for model compression,” arXiv preprint
arXiv:1710.01878, 2017.

[10] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[11] D. Cornelisse, “An intuitive guide to Convolutional Neural
Networks,” https://medium.freecodecamp.org/an-intuitive-guide-to-
convolutional-neural-networks-260c2de0a050, 2018, accessed: 2018-
12-01.

[12] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on Neural
Networks, vol. 4, no. 5, pp. 740–747, Sep. 1993.

[13] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
Filters for Efficient ConvNets,” CoRR, vol. abs/1608.08710, 2016.
[Online]. Available: http://arxiv.org/abs/1608.08710

[15] T. Yang, Y. Chen, and V. Sze, “Designing Energy-
Efficient Convolutional Neural Networks using Energy-Aware
Pruning,” CoRR, vol. abs/1611.05128, 2016. [Online]. Available:
http://arxiv.org/abs/1611.05128

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[17] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), June 2016, pp. 367–379.

Thomas Fontanari (M’15) is currently an un-
dergraduate final year student of the five-year
Computer Engineering degree from the Federal
University of Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil. His research interests include Digital
Signal Processing, Low-power Hardware Architec-
tures, Arithmetic Operators, Approximate Comput-
ing, and Machine Learning.

Leandro Mateus Giacominni Rocha (S’16) re-
ceived a five-year engineering degree in Computer
Engineering from the Federal University of Rio
Grande do Sul, Porto Alegre, Brazil, in 2016. He
also obtained an engineer degree in Electronic
Integrated Systems from the Grenoble Institute of
Technology, France, in 2015 as part of a double
degree program. He is a Ph.D. candidate at the
Federal University of Rio Grande do Sul, Porto
Alegre, Brazil. Currently, he is a visiting PhD stu-
dent at KUL and imec working on neural network

hardware accelerators for portable devices. His research interests are low-
power VLSI architectures, Approximate Computing, Neural Networks Accel-
erators, Arithmetic Operators, Digital Signal Processing, Machine Learning,
Multipliers.

Gustavo Madeira Santana (S’19) is currently an
undergraduate final year student of the five-year
Computer Engineering degree from the Federal
University of Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil. His research interests include Video
Coding Algorithms, Digital Signal Processing, Low-
power Hardware Architectures, Arithmetic Op-
erators, Approximate Computing, and Machine
Learning.

Guilherme Paim (S’15) received the five-year en-
gineering degree in Electronics Engineering from
the Federal University of Pelotas, Pelotas, Brazil,
in 2015. He is Ph.D. candidate at the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil. Currently, he is with Karlsruhe Institute
of Technology (KIT) as visiting researcher with
a Ph.D. sandwich scholarship. His research inter-
ests are: Approximate Computing, Low-power VLSI
architectures, Arithmetic Operators, Video Cod-
ing, Approximate Digital Signal Processing, Mixed-

signal circuits, Neural Networks Accelerators, Side channel attack-resistant
circuits for Cryptography.

Eduardo Antonio Ceśar da Costa (M’01) received
the five-year engineering degree in Electrical En-
gineering from the University of Pernambuco, Re-
cife, Brazil, in 1988, the M.Sc. degree in electrical
engineering from the Federal University of Paraíba,
Campina Grande, Paraíba, Brazil, in 1991, and the
Ph.D. degree in computer science from the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil, in 2002. Part of his doctoral work was de-
veloped at the Instituto de Engenharia de Sistemas
Computadores (INESC-ID), Lisbon, Portugal. He is

currently a full professor at the Catholic University of Pelotas (UCPel),
Pelotas, Brazil. He is co-founder and coordinator of the Graduate Program
on Electronic Engineering and Computing at UCPel. His research interests
are VLSI architectures and low-power design.

Sergio Bampi (M’86-SM’17) received the Elec-
tronics Engineer and B.Sc. Physics degrees from
Federal University of Rio Grande do Sul (1979).
He received the MSEE and Ph.D. in Electrical
Engineering degrees from Stanford University in
1982 and 1986, respectively. He is a full professor at
the Informatics Institute at the Federal University
of Rio Grande do Sul, Brazil, which he joined in
1981. He was a former president of the Brazilian
Microelectronics Society, of the FAPERGS Brazilian
research funding agency, and CEITEC Technical

Director. He is a senior member of IEEE and was a distinguished lecturer
of IEEE CAS Society (2009-2010). He has published more than 360 research
papers in the fields of CMOS Analog, Digital and RF Design, Video Coding
algorithms and hardware architectures, and MOS devices. He was Technical
Program Chair of SBCCI (1997, 2005), IEEE LASCAS (2013), SBMICRO
Congress (1989), and served on TPC Committees of ICCAD, ICCD, SBCCI,
ICM, LASCAS, VLSI-SoC and many other international conferences.

Vinicius Menezes de Oliveira
ICCEEg: 1 (20) – Junho 2020 28�

Vinicius Menezes de Oliveira

