
ICCEEg: 1 (19) – Dezembro  2018       17

Evaluation of Trunk Routing Heuristics Applied to
Detailed Routing

Eder Monteiro, Mateus Fogaça, Henrique Placido, Jucemar Monteiro, Isadora Oliveira
André Oliveira, Marcelo Johann and Ricardo Reis PGMicro/PPGC - Instituto de Informática - Universidade

Federal do Rio Grande do Sul (UFRGS)
{emrmonteiro, mpfogaca, hplacido, jucemar.monteiro, isoliveira, asoliveira, johann, reis}@inf.ufrgs.br

Abstract—This work presents an evaluation of two trunk
routing heuristics: Single Trunk Steiner Tree (STST) and Refined
Single Trunk Tree (RST-T), applied to detailed routing. We
compare the efficiency of both algorithms to generate the final
topology of the nets, considering wirelength, number of segments
and vias and the number of nets that each algorithm can route.
Experimental results show that RST-T can route about 5%
more nets than STST for the test cases without obstacles in
superior metal layers, and 6% fewer nets than STST when the
benchmarks have blockages in these layers. In addition, we did
another experiment that consists of ignoring all the blockages
present in the superior metal layers when routing the nets of the
benchmarks. RST-T can route about 5% more nets than STST
in this experiment. Also, RST-T generates topologies with 1-4%
better wirelength and produces on average 2% fewer vias in both
cases. However, these differences are too small, and they are not
significant on this evaluation.

Index Terms—Steiner trees, Detailed routing, Physical Design,
EDA, Microelectronics

I. INTRODUCTION

The steady decrease of feature sizes in the integrate circuits
allows the integration of more functional blocks in a single die
which nowadays can hold hundreds of millions of transistors.
However, the complexity of modern systems also raises the
cost of the design. Companies have to afford a high number
of engineers, tools and enablements. The time to market is also
critical to the success of the final product. Effective techniques,
able to reduce the time to market, and therefore its costs, are
desirable.

The design of an integrated circuit can be divided into two
main phases: synthesis and implementation. Synthesis takes a
high-level description of the design, traditionally written using
languages such as Verilog or HDL, and produces an optimized
gate-level netlist. The implementation is responsible for taking
the gate-level netlist and produced the layout. Placement
and routing are the two main steps of the implementation –
Placement finds the location of each gate in the netlist and
routing is responsible for tracing the interconnections among
the gates using wires and vias. Due to the its high complexity,
routing is divided into global and detailed routing. The global
routing divides the circuit area into a regular grid and finds a
global path which is composed of cells of the grid for each
net. The detailed routing traces the routing of each net inside
the path determined during the global routing. Since the grid
is usually coarse, the complexity of the detailed routing is
significantly reduced. Even tough, routing is the most timing

consuming task in the integrated circuits design flow and
usually a bottleneck for meeting the frequency constraints.

Early stages of the implementation flow, such as placement,
usually need to estimate the actual wire length of the inter-
connections and therefore apply routing prediction heuristics.
Two well-known routing prediction heuristics are the single-
trunk steiner tree (STST) [1] and the Refined Single Trunk
Tree (RST-T) [2]. These heuristics have an linear runtime and
produce a routing topology very similar to the actual routing
and therefore are fast and efficient. In this work we explore the
application of these heuristics to detailed routing. We describe
how these heuristics are adapted and measure their efficiency
in a comprehensive set of experiments.

The contributions of this paper may be summarized as
follows:

• We adapt the fast and effective routing prediction heuris-
tics STST and RST-T to detailed routing;

• We perform comprehensive experiments in the ISPD18
contests set of benchmarks, which provides testcases for
modern challenges, with circuit utilization rates from 47%
to 100% and obstacles

• We show that RST-T can route circuits almost 26% of
the nets of a circuit with 290386 gates

The remaining of this paper is organized as follows: Section
II presents a review of concepts related to this work and a
formal definition for the problem of detailed routing while
Section III presents the related works. Section IV explains
the methodology to compare the performance of both trunk
routing algorithms, the definition of these algorithms and the
adaptations that were made for the use of them in detailed
routing. The test cases and results are discussed in Section V
and Section VI draws the final remarks.

II. PRELIMINARIES

This section presents a review of the concepts related to
the content of this paper. First, we discuss the definition of
routing prediction and some methods applied to this problem.
We present the routing flow in VLSI applications and the
problem definition of detailed routing and its objectives.

A. Routing Prediction

When predicting the routing at initial stages of the design
flow is important to have estimations of the physical parame-
ters of interconnect nets (wirelength, source to sink distance,



ICCEEg: 1 (19) – Dezembro  2018       18

Fig. 1. Three methodologies to estimate routing

etc.) and its parasitics (the interconnections capacitance and
resistance) to guide design tools to optimize the layout,
particularly at floorplanning and placement. Since routing is
one of the last stages of the design flow, to assure a good result,
it is desired all previous steps to be aware of the physical
design [3]. However, the development of accurate and fast
estimation tools is a complex task. For example, an actual
routing algorithm could be used during placement iterations
to evaluate the quality of the solution, but the runtime of this
practice would be prohibitive [4].

There are many approaches to estimate routing in liter-
ature. The half-perimeter wire length (HPWL), depicted in
Figure 1(a), is often used during placement as a metric to
estimate the total net length, computed as the half-perimeter of
the minimal bounding box enclosing all the pins of the net [5].
This methodology presents optimal results for nets with up
to 3 pins, and have a fast runtime, but produces imprecise
wirelength estimates for nets with more than three pins.

A more precise estimate is given by finding the shortest tree
topology that connects all the pins of a net. This method is
named rectilinear minimum spanning tree (RMST) [6], and
is shown in Figure 1(b). In graph theory, the RMST of a set
of points in the plane is a minimum spanning tree of that
set, where the weight of the edge between two points is the
rectilinear distance between those two points.

A technique that usually produces the result closest to
the final topology of a routed net is the rectilinear Steiner
minimum tree (RSMT) [4], illustrated in Figure 1(c). It extends
the idea of the RMST by adding extra nodes in the net, usually
called Steiner nodes. With these extra nodes, it is guaranteed
that the generated topology will consist only of horizontal
and vertical wires, close to the final routing of a net. The
RSMT is an NP-Complete problem [7], that is, there is no
known algorithm capable of resolving it in polynomial time.
Therefore, heuristics and approximate algorithms are required,
since algorithms with high runtime are computationally too
expensive to be used in VLSI-design applications.

B. Routing Flow
Routing is the most consuming step in the design flow, and

therefore, is divided in literature into two phases [8], [9]:

LEF
Placed DEF

Global 
Routing

Track 
Assignment

Detailed 
Routing

Routed DEF

Fig. 2. Routing Flow

global and detailed routing. Also, some works recommend
an intermediate step between these two phases, called track
assignment [10], as shown in Figure 2. Next, we detail each
phase of the routing flow.

Global Routing. At this step, the circuit is divided into rows
and columns equally spaced, creating a regular grid where each
cell is called global routing cell (GCell). A net can have pins
in different GCells, and the global routing defines a routing
topology composed of GCells, enclosing all pins of the net.
The set of GCells of a net is also called global guide. Figure
3(a) shows an example of global routing for a 3-pin net.

Track Assignment. The circuit has vertical and horizontal
tracks, spaced according to the design rules. These tracks
compose the routing grid. It is desirable that the segments
of the routing of a net be assigned to these tracks. By doing
this, we avoid design rule violations like minimum spacing
violations. The track assignment step is responsible for this
task. As shown in Figure 3(b), it divides the global routing
of each net into horizontal and vertical segments, which are
called tracks. Specific tracks are assigned for the connection
of each pin of a net by the use of heuristics of optimization,
aiming congestion minimization for example. Tracks are only
assigned for connections that have at least the height or width
of a GCell in length. In Figure 3(b), the pins p0 and p1 will
have connections that occupy less than one GCell, so there is
no track assignment for them.

Detailed Routing. The final step of the routing flow,
detailed routing is responsible for the generation of the final
topologies of the nets of a circuit, using metal wires and vias.
Ideally, detailed routing must respect the global guides, that
is, the wires and vias of the routing must be inside the guides.
Furthermore, design rules like minimum spacing must be
respected. The use of track assignment makes compliance with
these requirements easier. Detailed routing will only handle
with the metal layers and vias and the local connections (that
is, connections that occupy less than one GCell). Figure 3(c)
shows the final topology for a 3-pin net.

C. Problem Definition

The input for the detailed routing may be defined as a
hypergraph G(V, E), where V is the set of vertices representing
pins, and E is the set of hyperedges representing the nets.
The placement gives information about pin locations, and the
global routing assigns nets to specific GCells and metal layers.
All technology rules have to be considered, such as the metal



ICCEEg: 1 (19) – Dezembro  2018       19

p
1

Pins

p
0

p
3

GCells

(a) Global Routing

p
3

Segments

Track in 
Metal 1

Track in 
Metal 2

Track assigned 
to p3

p
0

p
1

(b) Track Assignment

p
1

p
0

p
3

Track

wire

via

(c) Detailed Routing

Fig. 3. Example of the global routing, track assignment and detailed routing
for a 3-pin net

pitches, minimum metal area, end of the line and cut spacing
to ensure manufacturability. Besides a set of obstacles may be
specified for the routing.

III. RELATED WORKS

In this section, we present a review of some works on the
prediction of RSMTs and detailed routing.

A. Prediction of RSMTs

The fastest implementation for the prediction of RSMTs,
which generates optimal RSMTs is the GeoSteiner pack-
age [11], [12]. However, its high computational cost makes
its use impractical in VLSI applications.

Due to their complexity, several heuristics were proposed
to find RSMTs with a lower runtime. An example of such
heuristics is the single-trunk Steiner tree (STST) [1], which
construct a tree by connecting each pin to a trunk that goes
horizontally or vertically through the median position of all
pins. Although producing near-optimal trees for nets up to 5
pins, the wirelength of STST is far from optimal for nets with
more than ten pins. Therefore, its application is limited to low-
degree nets, that is, nets with a small number of pins (up to
5 pins).

In [2], Chen proposes an improvement of STST technique,
called Refined Single Trunk Tree (RST-T). Instead of connect-
ing each pin directly to the trunk, it is verified if it is shorter
to connect the pin to the trunk or the nearest segment that
already connects a pin to the tree. By adding this extra option
to connect the pins of a net, RST-T guarantees to generate
RSMT for nets up to 5 pins, and near-optimal solution for
nets up to 10 pins. Besides that, RST-T guarantees more stable
topologies. That is, by changing the position of a pin in a net,

the new RSMT will have a similar topology of the previous
RSMT.

Chu et al. [4] presents an O(nlogn) algorithm with high
accuracy for nets up to 9 pins, called fast lookup table
estimation (FLUTE). It classifies the nets of the circuit by their
pins relative positions and provides, for each of these groups,
a pre-computed set of possible optimal routing topologies. The
authors showed that FLUTE produces optimum results for nets
up to 9 pins. More large nets are decomposed into small nets
in a net-breaking technique so that smaller nets can use the
table, at the cost of precision. However, since most of the nets
in the circuits have a degree equal to 2 or 3 pins, the total
wirelength error is less than 2%.

Huang et al. [13] studies the obstacle-avoiding rectilinear
Steiner minimum trees (OARSMT) problem, which consists
of finding an RSMT for a given set of pins in the presence
of obstacles. In modern VLSI designs, obstacles block the
device layer and a fraction of metal layers. Is possible to
route wires on top of obstacles, but a long wire routed
over an obstacle may cause signal integrity problems because
buffers cannot be placed on top of any obstacle. To avoid this
problem, the authors of this study imposes slew constraints
on the interconnects that are routed over an obstacle. Also,
they propose an algorithm to find an optimal solution to this
problem, showing that the tree structures over obstacles with
slew constraints will follow simple forms. This algorithm
achieves 800 times speedup and reduces nearly 5% routing
resources on average when compared with the state-of-the-art
optimal OARSMT algorithm.

B. Detailed Routing

Detailed routing has extensive literature that can be traced
back to the use of maze search algorithms such as Lee’s [14]
and A* [15]. More recently, Zhang et al. [16] propose a flow
encouraging the use of regular routing patterns to achieve
correct-by-construction solutions with higher routability. The
authors show the efficiency of techniques such as trunk routing
and global segment assignment to route most of the netlist.
An implementation of the A* is used to route the remaining
nets. In [17], Jia et al. propose an ILP formulation based on
a technique called commodity flow. The work is extended
in [18] by Han et al. to cope with advanced design rules
present in sub-20nm technologies. ILP-based techniques reach
the optimal solution but do not scale well, so they cannot be
applied to regions bigger than a GCell [18].

IV. METHODOLOGY

In this work, we present an evaluation of STST and RST-T
when applied to detailed routing. Both algorithms are formerly
for routing prediction. In this section, we show the techniques
we apply to complete the detailed routing of the test cases
used for the experiments, focusing on the extension of the
implemented trunk routing techniques for detailed routing.

We present the routing flow implemented by Team UFRGS-
Brazil for the ISPD 2018 Contest on Initial Detailed Rout-
ing [19]. First, we have selected a set of local nets that will
be routed by the trunk routing algorithms. These local nets



ICCEEg: 1 (19) – Dezembro  2018       20

LEF
Global-routed 

DEF Selection of 
Local Nets

Trunk Router

A*

Routed DEF

Local nets

Rest of the nets

Routing failed nets

Completely routed nets

Fig. 4. Team UFRGS-Brazil routing flow for the ISPD 2018 Contest on Initial
Detailed Routing

(a) Trunk construction (b) Final topology

Fig. 5. Example of a tree generated by STST

are defined as the nets whose summation of bounding-box
height and width are smaller than 25 row-heights and with
layer assignment in Metal 3 or below. For the rest of the
nets, we apply the A* algorithm, completing the routing of
the circuit. Figure 4 shows this flow.

A. Implemented Heuristics

Now, we present the definitions of both trunk routing
heuristics, STST and RST-T, followed by the adaptations made
to the algorithms for their applications in detailed routing.

Single Trunk Steiner Tree (STST).
STST is a Steiner heuristic used for many years in wire

estimation, due to its linear computing time. This approach
has several advantages as a routing tree generator for routing
estimation: (i) it is easy to construct; (ii) The source to sink
distance is smaller or equal to the length of the net’s bounding
box; (iii) the topology is stable, and (iv) the wirelength is close
to RSMT for nets up to 5 pins.

On the other hand, it presents a considerable drawback:
the total wirelength of STST grows at a higher rate than
RSMT. The growth rate of STST is O(n), while for RSMT
this growing is in the rate of O(

√
n), where n is the number

of pins in a net. Therefore, for nets with a large number of
pins, STST gives a routing tree with longer wirelength than
RSMT.

STST presents a simple way to construct a tree: create
a segment called trunk that goes horizontally or vertically
through the median position of all pins and connect each pin
to this segment. Figure 5(a) shows a horizontal trunk created
between the pins, and Figure 5(b) shows the final topology
generated by STST.

Refined Single Trunk Tree (RST-T). RST-T is a routing
algorithm based on the STST and proposes a procedure

Algorithm 1: RST-T
Data: A set of points P = (xi, yi)
Result: A rectilinear Steiner tree with all points in P

connected
1 begin
2 ymid ← median of all Yi
3 xmin ← Min{ xi—(xi, y) ∈ P }
4 xmax ← Max{xi—(xi, y) ∈ P }
5 Construct a horizontal trunk from (Xmin, Ymid) to

(Xmax, Ymid)
6 U ← {(x, y)|(x, y) ∈ P and y > ymid }
7 L ← {(x, y)|(x, y) ∈ P and y < ymid }
8 PUini ← (x, y), where (x, y) ∈ U and (x, y) is closer

to the middle of the trunk
9 PLini ← (x, y), where (x, y) ∈ L and (x, y) is closer

to the middle of the trunk
10 Connect PUini and PLini to the trunk
11 Remove PUini and PLini from U and L, respectively
12 for All pins in U do
13 Connect pin to the neighboring stem or to the

trunk, depending on which one is shorter
14 end
15 for All pins in L do
16 Connect pin to the neighboring stem or to the

trunk, depending on which one is shorter
17 end
18 Build an RST-T with vertical trunk in a similar way

to 1 - 16
19 return Tree with shorter wirelength from horizontal

and vertical tree
20 end

to fix the problem of total wirelength grow rate of STST.
Figures 6(a) and 6(b) show the difference of the topologies
generated by STST and RSTT. Algorithm 1 describes this
procedure. The algorithm receives as input a set of points P,
representing the pins of a net, and returns a tree that connects
all the points in P. In lines 1-4 the median, maximum and
minimum of the points are computed. In line 5, the horizontal
trunk is constructed through all pins, at the mean y position
computed before. Lines 6 and 7 separate the pins into two
groups: one group contain the pins that are above the trunk,
and the other contains the pins that are below the trunk. In
lines 8 and 9 the first two pins to be connected are defined,
and line 10 completes the connections. From line 11 to line 16,
the rest of the pins are connected to the tree. Line 18 repeats
the process but building a vertical trunk.

The expected wirelength for RST-T is O(
√
n), where n is

the number of pins. When n approaches infinity, the expected
distance between a pin to this neighboring is of order n−0.5.
Therefore, the average cost to connect one pin to the tree is
O(n−0.5).

Also, for nets with no more than four pins, RST-T is an
RSMT [2]. For the nets with three pins, RSMT must have,
at most, one Steiner point, and for the nets with four pins,



ICCEEg: 1 (19) – Dezembro  2018       21

(a) Topology with STST (b) Topology with RSTT

Fig. 6. Difference between a topology generated by STST and RSTT

RSMT must have up to 2 Steiner points. RST-T can find the
best Steiner points for these cases. According to experimental
results, RST-T in practice is also an optimal RSMT for 5-pins
nets. For nets up to 10 pins, RST-T gives trees with wirelength
6% larger than RSMT.

B. Implementation Adaptations

Both STST and RST-T are heuristics for routing prediction.
In this work, we extend these heuristics to perform the actual
routing of VLSI circuits. Each segment of the topology of a net
is assigned to a specific metal layer, respecting the preferred
direction of the layers. Moreover, the final topologies must
respect as much as possible the global guides of the nets.

An essential procedure of detailed routing is the insertion of
vias. Vias are connections between two different metal layers.
This connection can be between segments in different layers,
or between a segment and a pin. Also, the number of vias
required to connect two different layers is equivalent to the
difference between these two layers. For example, if we want
to connect a segment in Metal 3 to a pin in Metal 1, we will
need two vias; one via to connect Metal 3 to Metal 2 and one
via to connect Metal 2 to Metal 1.

We also modified certain aspects of both algorithms in
order to simplify the generation of the final topologies of
the nets. Instead of creating two topologies with different
trunk directions, we define that the trunk will be routed in
the topmost layer available for a net. Hence, the direction of
the trunk will be the preferred direction of that layer. This
strategy aims to reduce the number of vias used to route a net
since the segments that will connect the pins to the trunk will
be closer to the first metal layer.

In our implementation of RST-T, we added a cost function
to compute the best layer to construct the other segments of
a net topology. First, we defined weights for the violation of
the routing guide, the violation of layer preferred direction and
the insertion of vias, according to the evaluation metrics of the
ISPD 2018 Contest [19]. For each one of the available layers,
we compute the cost of the insertion of a segment based on
the length of that segment and the defined weights. Eq. (1)
shows our cost function.

C(s, l) = (s.length×0.5)× (3l.gV ×3l.pdV )+2×numV ias,
(1)

where s is the segment, l is the current layer, gV is a boolean
indicating routing guide violation, pdV is a boolean indicating

Fig. 7. Detailed Routing with RST-T

preferred direction violation, and numVias is the number of
vias necessary to connect this segment to the topology.

After computing the cost of insert a segment for each layer,
we choose the layer with the lowest cost to construct the
segment. If the attempt of constructing this segment fails, the
next layer with the lowest cost is chosen, and so on. Figure 7
shows a net routed by RST-T, where we can see some segments
out of their guides or violating the preferred direction of a
metal layer.

V. RESULTS

A. Experimental Setup

The algorithms were implemented using C++ programming
language, and the experiments were performed on an Intel
Core i7-470K CPU @ 4.00GHz×8 machine with 32 GB of
memory.

We conduct our experiments in the benchmarks specified in
Table I from ISPD 18 [19]. The smaller benchmark is test1,
with 3153 nets and 8879 cells, while test10 is the largest
benchmark and has 182000 nets and 290386 cells. All test
cases have 1211 I/O pins, except for test1, that does not have
any I/O pin.

Macro blocks and cell density vary on each benchmark,
which helps to evaluate the robustness of our routing tech-
niques. As shown in Figure 8(a), test2 has no blockages and
lower density of cells. Figure 8(b) shows test5, which has
blockages and a higher density of cells while Figure 8(c)
shows test10, which has no blockages, but has the highest
cell density between the other test cases.

The benchmarks test1, test2, and test3 have the technology
node of 45nm, while the other benchmarks have the tech-
nology node of 32nm. Also, the die size of the test cases
varies between 3.8x10−2mm2 and 1.81mm2. Moreover, we
can divide the test cases into three groups. One group consists
of the benchmarks that have Power/Ground pins and obstacles
in standard cells only in Metal 1, as shown in Figure 9(a),
where the filled blue dots represent the obstacles and the
empty blue dots represent the available positions for segments
and vias. These benchmarks are test1, test2 and test3. The
benchmarks of the second group are test4, test5, test6, and
test7, and have obstacles and Power/Ground in Metal 1 and
Metal 2. In Figure 9(b) the filled red dots represent the



ICCEEg: 1 (19) – Dezembro  2018       22

TABLE I
DETAILS OF THE TEST CASES

Floorplan
Benchmark #inst #nets #I/Os #Blks #Layers A. Ratio

(height/width)
Die Area

(10−1mm2) Util
Tech.
(nm)

test1 8879 3153 N/A N/A 9 0.95 0.4 0.85 45
test2 35913 36834 1211 N/A 9 0.87 3.7 0.47 45
test3 35973 36700 1211 4 9 0.71 6.9 0.65 45
test4 72094 72401 1211 4 9 0.68 5.4 0.81 32
test5 71954 72394 1211 8 9 0.99 8,5 0.92 32
test6 107919 107701 1211 N/A 9 0,62 4.5 0.98 32
test7 179865 179863 1211 16 9 1.02 18 0.89 32
test8 191987 179863 1211 16 9 1.02 18 0.89 32
test9 192911 178857 1211 N/A 9 0.86 7.1 0.90 32
test10 290386 182000 1211 N/A 9 0.86 7.9 1.00 32

(a) (b)

(c)

Fig. 8. Floorplanning of benchmarks test2 (a), test5 (b) and test10 (c)

obstacles in Metal 2. The third group is composed of the
other benchmarks, which have Metal 2 to Metal 3 obstacles
and Metal 2 to Metal 4 Power/Ground pins as blockages.
Figure 9(c) shows an example of that obstacles and blockages,
with the filled yellow dots representing them.

B. Comparison between STST and RST-T

The results are divided into two analysis: (1) the percentage
of routed nets; (2) quality of the results, where we analyze
wirelength, the number of vias and the number of segments.
The first experiment consists of running STST and RST-T
for the same set of local nets, following the recipe described
in Section IV, and comparing the number of nets that each
algorithm can successfully route. In the second experiment,
we ran STST and RST-T for the nets that both algorithms
managed to route then we compare the final wirelength, the
number of vias and the number of wires for each algorithm.

Routed nets: The number of nets routed by RST-T is higher
than the nets routed by STST for the benchmarks that do not

(a) (b)

(c)

Fig. 9. Obstacles and Power/Ground pins in different metal layers

Fig. 10. Percentage of routed nets with each algorithm

have Power/Ground pins in Metal 2 or superior metal layers.
RST-T routed between 4% and 6% more nets than STST in the
benchmarks test1, test2, test3 and test4, as shown in Figure 10.
For the other benchmarks, STST routed up to 6% more nets
than RST-T, which was an unexpected result. Figure 11 shows
these results.

Quality of results: RST-T provides a better result for
wirelength than STST, with a difference between 1% and 3%.
RST-T also produces between 1% and 4% fewer vias. For the
first four benchmarks, STST produces fewer wires than RST-
T, but there is no significant difference between the number
of wires generated by each algorithm for the other test cases.



ICCEEg: 1 (19) – Dezembro  2018       23

Fig. 11. Percentage of routed nets with each algorithm: unexpected behavior

Fig. 12. Results regarding wirelength, number of wires, number of vias in
STST and RST-T

These differences are shown in Figure 12, and are computed
as 1− (RST -T/STST ).

Removal of macro blocks and obstacles in superior
layers: In addition to the results presented, we did another
experiment to understand the unexpected behavior of RST-
T when the benchmarks have Power/Ground pins in superior
metal layers. This experiment consists in ignoring all the
blockages present in the superior layers when routing the
nets of the benchmarks. In this experiment, we show that it
was the presence of these blockages that affected the routing
efficiency of the RST-T. Figure 13 shows that RST-T routed
about 5% more nets than STST without the blockages. Besides
that, STST also achieved an efficiency improvement when we
ignored the blockages, routing between 1% and 3% more nets.
RST-T continues to produce topologies with better wire length
than STST, with 1-3% less wire length but has produced 3%
more vias and 4% more segments, as shown in Figure 14.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we present an analysis of two routing pre-
diction algorithms, STST and RST-T, being used in detailed
routing. A set of experiments was conducted to compare the
efficiency of both algorithms to generate the final topology
of the nets using metal wires and vias. We performed these
experiments upon a proposed implementation of STST and
RST-T. The results show that RST-T can route between 4-6%
more nets than STST in most of our test cases, with 1% to

Fig. 13. Percentage of routed nets after removing blockages in Metal 2 or
superior metal layers

Fig. 14. Results regarding wirelength, number of wires, number of vias in
STST and RST-T without blockages in Metal 2 or superior metal layers

4% less wirelength and use 2% to 5% fewer vias. However,
for the test cases with blockages in Metal 2, STST can route
6% more nets than RST-T. We also show that the presence of
macro blocks and obstacles in superior metal layers affected
the routing efficiency of both algorithms, specially RST-T.
When ignoring these obstacles, RST-T routed about 5% more
nets than STST, and 13% more nets than before the removal
of the obstacles.

As future work, we intend to extend our experiments to
get a better understanding of the behavior of STST with the
test cases with blockages in Metal2 and propose a heuristic
for RST-T to avoid blockages in Metal2 and superior metal
layers.

REFERENCES

[1] J. Soukup, “Circuit layout,” Proceedings of the IEEE, vol. 69, no. 10,
pp. 1281–1304, Oct 1981.

[2] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng, “Refined single
trunk tree: A rectilinear steiner tree generator for interconnect
prediction,” in Proceedings of the 2002 International Workshop
on System-level Interconnect Prediction, ser. SLIP ’02. New
York, NY, USA: ACM, 2002, pp. 85–89. [Online]. Available:
http://doi.acm.org/10.1145/505348.505366

[3] M. Tatsuoka, R. Watanabe, T. Otsuka, T. Hasegawa, Q. Zhu,
R. Okamura, X. Li, and T. Takabatake, “Physically aware
high level synthesis design flow,” in Proceedings of the 52Nd
Annual Design Automation Conference, ser. DAC ’15. New York,
NY, USA: ACM, 2015, pp. 162:1–162:6. [Online]. Available:
http://doi.acm.org/10.1145/2744769.2744893



ICCEEg: 1 (19) – Dezembro  2018       24

[4] C. Chu and Y. C. Wong, “Flute: Fast lookup table based rectilinear
steiner minimal tree algorithm for vlsi design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 1, pp. 70–83, Jan 2008.

[5] A. Kennings and I. Markov, “Analytical minimization of half-perimeter
wirelength,” in Proceedings 2000. Design Automation Conference.
(IEEE Cat. No.00CH37106), June 2000, pp. 179–184.

[6] H. Zhou, N. Shenoy, and W. Nicholls, “Efficient minimum spanning tree
construction without delaunay triangulation [vlsi cad],” in Proceedings
of the ASP-DAC 2001. Asia and South Pacific Design Automation
Conference 2001 (Cat. No.01EX455), 2001, pp. 192–197.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[8] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical Design:
From Graph Partitioning to Timing Closure, 1st ed. Springer Publishing
Company, Incorporated, 2011.

[9] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Eds., Electronic Design
Automation: Synthesis, Verification, and Test. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2009.

[10] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, “Track assign-
ment: a desirable intermediate step between global routing and detailed
routing,” in IEEE/ACM International Conference on Computer Aided
Design, 2002. ICCAD 2002., Nov 2002, pp. 59–66.

[11] D. M. Warme, P. Winter, and M. Zachariasen, Exact Algorithms for
Plane Steiner Tree Problems: A Computational Study. Boston,
MA: Springer US, 2000, pp. 81–116. [Online]. Available:
https://doi.org/10.1007/978-1-4757-3171-2 6

[12] “GeoSteiner—Software for Computing Steiner Trees.” [Online].
Available: http://www.geosteiner.com/

[13] T. Huang and E. F. Y. Young, “Construction of rectilinear steiner
minimum trees with slew constraints over obstacles,” in 2012 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2012, pp. 144–151.

[14] C. Y. Lee, “An algorithm for path connections and its applications,” IRE
Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 346–365,
Sept 1961.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to ”A Formal
Basis for the Heuristic Determination of Minimum Cost Paths”,”
SIGART Bull., no. 37, pp. 28–29, Dec. 1972. [Online]. Available:
http://doi.acm.org/10.1145/1056777.1056779

[16] Y. Zhang and C. Chu, “Regularroute: An efficient detailed
router with regular routing patterns,” in Proceedings of the 2011
International Symposium on Physical Design, ser. ISPD ’11. New
York, NY, USA: ACM, 2011, pp. 45–52. [Online]. Available:
http://doi.acm.org/10.1145/1960397.1960410

[17] X. Jia, Y. Cai, Q. Zhou, G. Chen, Z. Li, and Z. Li, “Mcfroute: A detailed
router based on multi-commodity flow method,” in Proceedings of the
2014 IEEE/ACM International Conference on Computer-Aided Design,
ser. ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 397–404.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2691365.2691446

[18] K. Han, A. B. Kahng, and H. Lee, “Evaluation of beol design rule
impacts using an optimal ilp-based detailed router,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015,
pp. 1–6.

[19] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “Ispd 2018
initial detailed routing contest and benchmarks,” in Proceedings of the
2018 International Symposium on Physical Design. ACM, 2018, pp.
140–143.


