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Abstract—The approximated adders are generally composed of
two parts, that is, the imprecise (approximate) part, which is a
set of least significant bits, and a precise part, with the remaining
most significant bits. Previous work has only explored the Ripple
Carry Adder (RCA) in the precise part of approximate adders.
This work proposes the exploration of different topologies of
parallel prefix adders (PPA) in the precise part of approximate
adders, whose approximate adders are introduced in the sum
tree of the Sum of Absolute Differences (SAD) metric, aiming at
the ideal combination of performance and dissipation power. In
addition to the RCA, we evaluated the use of PPAs such as Brent-
Kung, Kogge-Stone, Han Carlson, Ladner-Fisher and Sklansky in
the precise part of two well-known approximate adductors, that
is, Error Tolerant I (ETA-I) and copy adder. The additives were
described in VHDL and synthesized in 45 nm CMOS technology.
Synthesis results point to the Ladner Fischer adder as the most
appropriate to be used in the precise part of the approximated
adders.

Keywords—Approximate Computing, Parallel Prefix Adders, Ap-
proximate Adders, Low Power, SAD, VLSI design.

I. INTRODUCTION

MOTION Estimation (ME) is one of the main responsible
for the high compression ratio in digital videos, which

is why it is one of the most important steps in coding. The
ME aims to eliminate temporal redundancy. Given a block of
the frame to be coded and a search window in a frame of
reference, the ME looks for the block of the search window
that is more similar to the block of the frame to be coded.

During ME a similarity metric is used to find the best match
between the blocks being coded and the candidate blocks,
operation is known as Block Matching (BM). Among the
existing similarity metrics, the sum of the absolute differences
(SAD) (figure 1) used to implement hardware encoders.

In this work we will explore the sum tree of the SAD (figure
2), using the approximated adders, which are exploited by
efficient adders PPA (Parallel Prefix Adder) in its precise part.
Among the PPA adders explored we mention Brent Kung [1],
Kogge Stone [2], Han Carlson [3], Sklansky [4] and Ladner
Fischer [5]. SAD architectures developed with 16, 24 and 32-
bit widths, use in their sum tree approximate sums of 16, 24
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Fig. 1. Block diagram of the SAD architecture using the ”sum” tool.

Fig. 2. Sum tree explored with the use of approximate adders.

and 32 bits, respectively. The approximated 16, 24, and 32-
bit modulators are divided into two parts the precise and the
approximate part, both the precise and the approximate part
have the same width, in half the bits, for example, in a 16-bit
bits, 8 bits are accurate and 8 bits are approximate.

The approximate computing [6] has emerged as an interest-
ing area for energy efficiency, since computationally intensive
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applications like visual processing and multimedia signals do
not require high precision to work correctly. Adders circuits
have been explored in approximate computing context since
they are basic building blocks heavily used in those intensive
computational applications. They can be implemented in a
way to balance the trade-off between accuracy vs. perfor-
mance/power.

Approximate computing is a solution for energy-saving
projects, providing balance between accuracy and power [7].
Therefore, both the error distance and the error rate are
important for the quality of the output. In the approximate
computation the approximate summers are divided in two
groups: (I) exact part located in the most significant bits;
(II) approximate part located at the least significant bits. For
each less significant bit there are techniques that implement
an inexact addition. What is common, according to [8], in the
inexact part of addition that simplification has a design of a
full adder. In the most significant bits we will explore for better
performance the PPA (Parallel Prefix Adder).

The approximate computing paradigm emerged to increase
performance and to reduce power dissipation [6]. The key ap-
proach in approximate hardware is to reduce the computation
accuracy in favor of energy-efficiency. In circuit level design,
this is performed by designing simpler circuits to speed up the
critical path timing and/or to consume less power. Approxi-
mate computing techniques take advantage of approximation-
tolerant applications which do not need high accuracy all the
time but only “good enough” or “sufficiently good” results
for output perceptual quality. In [9] is stated the following
properties to define an approximation-resilient application: (i)
there is no a golden or accurate result, but a range of acceptable
ones and (ii) robustness to input noisy data. For example,
multimedia applications (e.g., video coding, audio filtering,
image processing, and so on), highly demanded by current
portable devices, are intrinsically related with human senses.
The multimedia signals are in fact approximation-tolerant
applications, since in [10] is stated that human senses process
analog information and have difficulty to realize the negative
impact of digital approximations. In other words, it is possible
to adopt approximate computing techniques to improve energy
efficiency in multimedia applications by adequately exploring
the user experience at different profiles of quality.

II. SAD, APPROXIMATE ADDERS AND PARALLEL PREFIX
ADDERS

A. SAD - Sum of the Absolute Differences

In this work we will explore: (I) the SAD sum tree with
the use of approximate adders, ETA-I and Copy Adder; (II)
the precise part of the approximated adders with the use of
logarithmic delay adders found in the literature.

Sum of the Absolute Differences (SAD) is the metric most
used to determine the greatest similarity between two video
blocks in the Motion Estimation process. This metric can also
be applied to determine the best offset for Fractional Motion
Estimation and to choose the best Intra prediction mode. The
SAD is calculated by the sum of absolute differences pixel

by pixel between two blocks: the block to be coded and a
reference block.

The hardware architecture of SAD consists of subtractors,
absolute operators, an addition tree and an accumulator to
calculate the final value of the SAD, as we will demonstrate
in the equation (1), where O is the original block, R is the
reference block and m and n are the dimensions of the blocks
in samples. For high performance, many SAD hardware units
are used in parallel within motion estimation architectures.

SAD =
m−1�

i=0

n−1�

j=0

|Oi,j −Ri,j | (1)

Figure 1 demonstrates the SAD architecture that consists of
eight subtractors, to subtract eight samples from the original
block (Orig) with eight samples from the reference block
(Ref), generating the residual samples that are stored in eight
registers. Eight operators for absolute calculation (module)
receive the input as input and perform this operation. A tree
of adders accumulates the eight absolute values and generates
a partial SAD value. The partial SAD is stored in a register in
each clock cycle. Therefore, after eight clock cycles the final
SAD value is calculated for a block of 8x8 samples.

B. Approximate Adders
Approximate computation is useful in image processing, as

the human eye does not perceive some imperfections in the
images. According to [8] in images there are several sources
of tolerance: (I) percent limitations that are determined by
the human brain’s ability to fill in missing information; (II)
redundant input data, this redundancy means that an algorithm
can be lossy and still be sufficient; (III) noise inputs.

The approximate adders can be classified as computational
performance- and power-oriented designs. The former is re-
lated to adders divided into m independent blocks or sub-
adders to speed up the critical path timing. The claim is
that, for random and uniformly distributed pairs of operands,
more extended carry propagation rarely occurs. Based on that,
additional logic is necessary to speculate carry-in for each
sub-adder, since this class of approximate adder breaks the
carry propagation in many parts. Examples of adders which
improve computational performance are the Error Tolerant
Adder II [11], Error Tolerant Adder IV [12], and the Almost
Correct Adder [13]. This class of approximate adders is also
characterized by the presence of infrequent and high magnitude
sum errors. Therefore, the works in [14], [15], [13], [16]
proposed accuracy configurable adders to cope with this error
characteristics. On the other hand, more logic is added to detect
and correct the sum errors.

A different philosophy is to propose power-oriented adders
which generally are divided into two parts: (i) the least signif-
icant approximate part and (ii) the most significant accurate
part. Examples of power-oriented approximate adders can
be observed in [17], [18], [10]. The principal idea in the
approximate part is to replace the full adder cells by simpler
adder circuits. Therefore, power reduction is the main objective
of this class of adders. In addition, these adders also tend
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to reduce critical path timing, because in the approximate
part there is no carry propagation scheme. One can observe
that the classical truncation is a type of power-oriented adder
which truncates least significant full adder cells. This class of
approximate adders is also characterized by the presence of
frequent and low magnitude sum errors. Such errors are of
low magnitude because the bit-width of the approximate part
can be controlled through an approximate parameter k. In this
work, the proposed approach is to explore the power-oriented
adders to give priority to power-efficiency. This is also ratified
in [19] which states that the adders focused on delay reduction
cannot be used to explore power-efficiency in structures which
demand the massive use of additions like the multipliers. In
addition, the power-oriented approximate adders enable the
exploration of multiple conventional adder topologies in the
precise part, which is not true for the approximate adders
divided into many blocks.

Therefore, we consider in this study the exploration of
the fifth approximate version of AMA (Approximate Mirror
Adders) [18] and the Error Tolerant Adder I [10], because
they are also explored by related works [20], [21]. The former
approximate adder is renamed to “Copy adder” due to its copy
function implemented by the buffers. The approximate adders
which are explored in this study can be observed in Figure 3.

The “Copy adder” in Figure 3 (a) has its k bits long
approximate part implemented by buffers to copy the operand
a to the sum. This procedure has 50% probability of getting
the correct sum for each bit position. Furthermore, the carry-in
estimation for the precise part is implemented by the simpler
assignment of the input operand bit bk−1. This procedure has
75% probability of getting a correct carry-in estimation to the
precise block. The approximate part of the ETA-I in Figure
3 (b) is implemented by the use of half adders. The sum
is performed in the non-conventional direction, (i.e. from the
most significant bit k−1 to the least significant bit position 0).
The control logic block is conceived as follows: when the first
carry-generate c is equal to ”1”, then all the remaining least
significant sum bits are set to ”1”. Otherwise, the sum result is
the one computed by the propagate signal. The carry-in to the
precise part in ETA-I is statically set to ”0”. This procedure has
50% probability of getting the correct carry-in to the precise
part. One can observe that for both the approximate adders,
any conventional adder topology can be implemented in the
precise part. Related works in [20] and [21] explore the use
of the RCA. In this work, we explore the RCA plus high-
performance PPA’s. That is why in the next subsection a brief
PPA overview is developed.

C. Precise Adders
As previously mentioned, adders are fundamental building

blocks in a great variety of computational applications. Based
on that, many adder topologies have been proposed to deal with
the tradeoff between power and computational performance.
The Ripple Carry Adder (RCA) topology is characterized to
present low values of power consumption, area, and computa-
tional performance. Depending on the high-performance appli-
cation requirements and given that computational complexity is
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Fig. 4. Parallel Prefix Adder Structure

increasing in nowadays tasks, the key approach is to accelerate
the adder’s critical path delay (i.e. carry propagation) at the
expense of higher area and power dissipation. Based on that,
the Parallel Prefix Adders (PPA’s) were proposed to deal with
high-performance demands [22].

The carry propagation structure in the PPA’s is implemented
by simple logic cells which tend to keep a regular connection.
Based on that, the sum computation can be divided into pre-
processing, prefix computation and post-process parts, as can
be seen in Figure 4.

In the pre-processing part, the propagate pi (i.e. ai ⊕ bi)
and generate gi (i.e ai∧ bi) signals are computed based on the
input operands ai and bi. In the prefix computation stage, the
carry computation is accelerated by the parallel composition of
the black cells which implement the group propagate Pi:j and
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Fig. 5. Brent-Kung Adder.

Fig. 6. Kogge-Stone Adder.

generate Gi:j signals as well as the grey cells which compute
the carry ci. Finally, the post-processing step is given by the
sum si = pi ⊕ ci−1.

1) Use of PPA adders on the precise part of the approximate
adders: Different configurations between the black and grey
cells can be obtained. According to the PPA’s taxonomy
presented in [23], the different prefix cells configurations
allow tradeoffs among (i) the number of logic levels, (ii) the
maximum fanout, and (iii) the maximum number of horizontal
wire tracks (i.e wire density). All of these aspects affect the
adder delay. Based on that, PPA’s topologies proposed in [24],
[2], [3], [5], [4] are considered in this study. Their main
characteristics concerning logic levels, maximum fanout, and
the maximum number of wiring tracks are presented in Table
I [23].

TABLE I. TAXONOMY OF n-BIT PPA’S

PPA logic maximum maximum
levels fanout wiring

tracks
Brent-Kung (B-K) [24] 2 log2(n)− 1 2 1

Sklansky (SK) [4] log2(n)
n
2
+ 1 1

Kogge-Stone (K-S) [25] log2(n) 2 n
2

Han-Carlson (H-S) [3] log2(n) + 1 2 n
4

Ladner-Fischer (L-F) [5] log2(n) + 1 n
4
+ 1 1

As can be seen in Table I, the Brent-Kung [Figure 5] adder

Fig. 7. Han-Carlson Adder.

Fig. 8. Sklansky Adder.

has the highest number of levels, while presents low values
for both fanout and wire density. The Sklansky [Figure 8]
and Kogge-Stone [Figure 6] have the lowest number of logic
levels, but the former presents the highest fanout, and the
latter has the worst wire density due to the highest number
of prefix cells. The Han-Carlson [Figure 7] is the hybrid
solution between the Brent-Kung and Kogge-Stone. Therefore,
this adder balance the tradeoff between the number of logic
levels and wiring tracks. The Ladner-Fischer [Figure 9] adder
is the hybrid approach between Sklansky and Brent-Kung so

Fig. 9. Ladner Fischer Adder.
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that the tradeoff is balanced between the number of logic levels
and the fanout.

III. RESULTS

The SAD metric has its sum tree explored, em 16, 24 e 32
bits, by the approximate Adders Copy and ETA-I that employ
the parallel prefix adders in the precise part. All circuits
were implemented in VHDL language and synthesized in 45
nm technology using the Cadence RTL Compiler tool. The
approximate adders make up half the bit width of the adders
for all designs under evaluation. During the synthesis, all the
combinational logic of the designs is preserved to ensure that
there are no optimizations or changes in the traditional adder
topologies.

The power was estimated by extracting the switching activ-
ity with random numbers as input. The results referring to the
area under analysis iso-performance at 500 MHz.

For the power results it was analyzed the trade-off based on
the RCA adder for comparison between the PPAs cells. The
choice of RCA is because it is the most commom adder and
it is a not a PPA adder.

The power results were evaluated for the approximate adders
Copy and ETA-I for the sum tree in the SAD architectures.
Both, Copy and ETA-I adders were evaluated with the PPA
adders in the addition computer precise part.

For 16, 24 and 32 bits at a frequency of 500MHz the Ladner
Fische adder presented the smaller power dissipation. This
adder showed an improvement over the RCA of 2.45% (Figure
10) for the 16-bit Copy adder, 1.52% (Figure 11) for the 16-bit
ETA-I adder, 11.64% (Figure 12) for the 24-bit Copy adder,
9.49% (Figure 13) for the 24-bit ETA-I adder, 17.42% (Figure
14) for the 32-bit Copy adder and 16.15% (Figure 15) for the
32-bit ETA-I adder.

With the power consuption analyzes it is possible to infer
that at higher clock frequency rates the PPA adders signifi-
cantly reduce the power dissipation, since these adders were
designed to handle large computational efforts. The Ladner
Fischer adder performed the best performance by having a
regularity of layout that lies between the terms of the Sklansky
and Brent Kung adders, this adder calculates the prefix for odd
numbers and uses one more stage to undo the even positions
in the prefix computation.

[h!]

IV. CONCLUSION

This work proposed the exploration of the SAD sum tree,
which is explored among different summing topologies to
implement the precise part of approximate state-of-the-art
additives. Depending on the demands of applications, one can
consider using a different topology than adopting only the
low-performing RCA. This work allows a more significant
design space, where performance and power consumption can
be optimized to generate energy efficient projects.
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Fig. 10. Power Results SAD with Copy Adder 16 bits

Fig. 11. Power Results SAD with ETAI 16 bits

Fig. 12. Power Results SAD with Copy Adder 24 bits
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Eduardo Antonio Ceśar da Costa (M’13) received
the five-year engineering degree in Electrical Engi-
neering from the University of Pernambuco, Recife,
Brazil, in 1988, the M.Sc. degree in electrical en-
gineering from the Federal University of Paraiba,
Campina Grande, Paraiba, Brazil, in 1991, and the
Ph.D. degree in computer science from the Federal
University of Rio Grande do Sul, Porto Alegre,
Brazil, in 2002. Part of his doctoral work was de-
veloped at the Instituto de Engenharia de Sistemas
Computadores (INESC-ID), Lisbon, Portugal. He is

currently a Full Professor at the Catholic University of Pelotas (UCPel),
Pelotas, Brazil. He is co-founder and coordinator of the Graduate Program
on Electronic Engineering and Computing at UCPel. His research interests
are VLSI architectures and low-power design.


