
ICCEEg: 1 (16) – Outubro 2017 32

      
Applying the Differential Collision Cache Attack on

MPSoCs
Bruno Endres Forlin, Bruna Ramos de Carvalho, Altamiro Susin, Cezar Reinbrecht

Abstract—Side-Channel Cache attacks are known to be an effi-
cient means of attacking desktops and embedded systems. In this
paper, we present the adaptation of Bogdanov’s [1] differential
collision attack to an MPSoC platform. The attack was directed to
an T-table implementation of the Advanced Encryption System
(AES). It focuses on the cache access collisions caused by the
sequence of lookups the encryption process requires. Specifically
a situation called a wide, where a chain reaction of collisions
happens in the same process. We evaluated it’s execution on a real
MPSoC implemented in an FPGA, results show that the attack
can be successful in this scenario, but it is sensitive to the cache
size.

Keywords—MPSoC, Side-Channel Attack, timing attack, collision
attack, hardware security, AES.

I. INTRODUCTION

Side-Channel Attacks are a group of methods that monitor
and explores any system, hardware or software, to reveal
its information, which could be personal information, bank
accounts, passwords. These side-channels focus on secondary
and unintentional inputs and outputs of the computation per-
formed, typically, a cryptographic task. For instance, the time
to process an algorithm, the radiation emitted by integrated
circuits, due to internal switching, the energy consumed during
specific tasks and many others. Usually, SCAs explores the
physical device, with highly accurate instrumentation. How-
ever, the present work targets the exploitation of the logical
features, such as the timing leakage. The first mention in
the literature about this leakage was a paper presented by
Kocher [2] in 1996. There he described how the information
of execution time of a cryptoprocess can be correlated and
analyzed in order to find the secret key.

In recent years the use of cache memories made time ori-
ented attacks more attractive, since the access speed of a CPU
to a cache memory is at least an order of magnitude higher
than to the main memory. These kind of attacks benefit greatly
from different time accesses within the memory hierarchy. In
addition, the last decade saw a shift from hardware imple-
mentations of symmetric key algorithms to software look-up
table implementations, encouraging even more the use of cache
oriented attacks. These attacks can usually be classified as
trace driven, access driven and time driven [1]. Trace driven
attacks rely on the attacker being able to observe every memory
and cache transactions. As such, he knows the behavior of
cache misses and hits at each access performed [3]. The access
driven attack fills the cache with the attackers data, and after
encryption takes place, checks which data is still present [4].
Time driven attacks take advantage of the fact that cache hits
and misses cause huge differences in processing time, resulting

in delays noticeable even by software. Many authors developed
methods capable of manipulating cache behavior [5] [6] [7] to
increase the likelihood of the attack strategy, and accentuate
the timing behavior in some cases.

A different technique, called Differential Collision Cache
Attack was developed by Bogdanov et al[1] in 2010. It relies
on cache memory collisions, a situation where the CPU re-
quests information to the memory hierarchy and the requested
information is already inside the cache. This process speeds
up the memory requisition from the CPU considerably. During
the execution of the performance-oriented AES algorithm, a
sequence of lookups is performed by the encryption at each
round. It is possible that a situation called a wide collision
may happen. It is an specific case in which a series of
collisions happen in the rounds of execution of the same
encryption process. It can yield a significant difference in the
execution time. It accomplishes such results by encrypting a
pair of plaintexts in sequence, as to reduce interference by
other processes. In addition, these plaintexts are created with
this behavior in mind, and as such are designed to amplify
the number of collisions. Reducing the number of samples
required to achieve full key recovery.

In this attack pairs of plaintexts are created in a specific
manner so that five AES S-boxes (one in round two and four
in round three) process either pairwisely equal (what we call a
wide collision) or pairwisely different values in two adjacent
AES executions. When a wide collision happens, the number
of S-boxes collisions between the two AES runs will be the
5 higher than the average of times, when a wide collision
doesn’t happen. Given enough samples it is possible to detect
enough wide collisions against the background, allowing the
construction of four systems of nonlinear equations. These
systems represent only part of the key, the rest being re-
solved by brute-force. Bogadnov’s attack environment was an
ARM920T set-up as a server running the AES implementation
of OpenSSL [8], which was queried via the Ethernet interface
of the board.

This technique presents several advantages over other at-
tacks targeted at the cache memory. The original author [1]
presented this attack as a viable alternative to previously
published attacks, even in sight of practical setups. This
assumption was contested by Bonneau and Mironov [6], as
they disagreed about Bogdanov’s attack being feasible in a
real world scenario. The main contribution of our work is
the implementation of the Differential Collision Cache Attack
in an MPSoC environment. Where the attacker shares the
same network as the secure CPU, reducing communication
noises. We also present all adaptations required to implement
the attack in such architectures. Results showed that the



ICCEEg: 1 (16) – Outubro 2017 33

      

implementation is feasible, even though the success of the
attack is deeply dependent of the size of the cache and the
configuration of the MPSoC.

This paper is divided in eight sections. Section II introduces
the AES algorithm and the concept of the performance oriented
implementation. Section III presents the related works regard-
ing collision attacks. In Section IV, a detailed description of the
attack is presented. Section V contains the information related
to the execution in our MPSoC platform, and the adaptation
performed. Section VI presents the experiments and results
achieved through a platform developed by our team. Finally,
we conclude the paper in section VII.

II. ADVANCED ENCRYPTION CRYPTOGRAPHY

Advanced Encryption Standard is the preferred cryptography
in many (mainly commercial) applications. This symmetric
encryption operates inputs of 128 bits and keys of 128, 192 or
256 bits. This cipher algorithm uses iterations, called rounds,
to perform a series of linked operations. In the case of a key of
128 bits, it is completed in 10 rounds. These activities refer to
a substitution-permutation network because it replaces inputs
by specific outputs and then shuffles the bits.

1) Encryption Process: The input is a plaintext of 128 bits
organized as a block of 16 bytes, represented as Plaintext →
Pi, where 0 <= i <= 15. AES arranges this block as a matrix
of four columns and four rows:

Plaintext =




x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15




The same structure is applied to the key, for example, a 16
byte key is represented as Key → Ki, where 0 <= i <= 15:

Key =




k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15




Before starting the encryption, it is performed the key
expansion, which transforms the key in several keys to be used
for each round, called subkeys. This process can be represented
as expanded(Ki) → kroundi , where 0 <= i <= 15 and
0 <= round <= 10. Figure 1 shows this process. Then, four
operations are executed at each round, with an exception on
the last one (figure 1):

• AddRoundKey: The 16 bytes of the plaintext or interme-
diate state (x) are considered as 128 bits and are XORed
to the 128 bits of the subkey (kround). If this is the
last round, then the output is the ciphertext. Otherwise,
the resulting 128 bits are interpreted as 16-bytes and
continue with the following operations.

• SubBytes: The 16 input bytes are substituted according
to a fixed table (S-box) given in design. The result is a
new matrix of four rows and four columns.

• ShiftRows: Each of the four rows of the matrix is shifted
to the left, in a circular manner (no data lost).

• MixColumns: Each column of four bytes is now trans-
formed using a unique mathematical function. This
function takes as input the four bytes of one column
and outputs four entirely new bytes, which replace
the original column. The result is another new matrix
consisting of 16 new bytes. It should be noted that this
step is not performed in the last round.

All these four operations can be represented as an iterative
set of equations. Each equation presented at 1 represents the
computation of each byte (of all 16 bytes) in the intermediate
value. These intermediate bytes are iterated through these
equations for ten rounds to accomplish the 128 AES algorithm.
To calculate each part, the intermediate value from the current
round is used as an index of the S-Box table, represented
as the S. After changing its value, a circular shift operation
is performed, where the number besides the S represents the
number of shifts (01 is one shift to the left, 02 is two shifts
to the left, and so on). When everything is ready, one can
compute the AddRoundKey operation from the next round to
be ready for the next iteration. Considering this algorithm,
before beginning with these equations the inputs must perform
an AddRoundKey in advance.

(xr+1
0 ) ← 01.S[xr

0]⊕ 01.S[xr
5]⊕ 02.S[xr

10]⊕ 03.S[xr
15]⊕ kr+1

0

(xr+1
1 ) ← 01.S[xr

0]⊕ 02.S[xr
5]⊕ 03.S[xr

10]⊕ 01.S[xr
15]⊕ kr+1

1

(xr+1
2 ) ← 02.S[xr

0]⊕ 03.S[xr
5]⊕ 01.S[xr

10]⊕ 01.S[xr
15]⊕ kr+1

2

(xr+1
3 ) ← 03.S[xr

0]⊕ 01.S[xr
5]⊕ 01.S[xr

10]⊕ 02.S[xr
15]⊕ kr+1

3

(xr+1
4 ) ← 01.S[xr

1]⊕ 01.S[xr
6]⊕ 02.S[xr

11]⊕ 03.S[xr
12]⊕ kr+1

4

(xr+1
5 ) ← 01.S[xr

1]⊕ 02.S[xr
6]⊕ 03.S[xr

11]⊕ 01.S[xr
12]⊕ kr+1

5

(xr+1
6 ) ← 02.S[xr

1]⊕ 03.S[xr
6]⊕ 01.S[xr

11]⊕ 01.S[xr
12]⊕ kr+1

6

(xr+1
7 ) ← 03.S[xr

1]⊕ 01.S[xr
6]⊕ 01.S[xr

11]⊕ 02.S[xr
12]⊕ kr+1

7

(xr+1
8 ) ← 01.S[xr

2]⊕ 01.S[xr
7]⊕ 02.S[xr

8]⊕ 03.S[xr
13]⊕ kr+1

8

(xr+1
9 ) ← 01.S[xr

2]⊕ 02.S[xr
7]⊕ 03.S[xr

8]⊕ 01.S[xr
13]⊕ kr+1

9

(xr+1
10 ) ← 02.S[xr

2]⊕ 03.S[xr
7]⊕ 01.S[xr

8]⊕ 01.S[xr
13]⊕ kr+1

10

(xr+1
11 ) ← 03.S[xr

2]⊕ 01.S[xr
7]⊕ 01.S[xr

8]⊕ 02.S[xr
13]⊕ kr+1

11

(xr+1
12 ) ← 01.S[xr

3]⊕ 01.S[xr
4]⊕ 02.S[xr

9]⊕ 03.S[xr
14]⊕ kr+1

12

(xr+1
13 ) ← 01.S[xr

3]⊕ 02.S[xr
4]⊕ 03.S[xr

9]⊕ 01.S[xr
14]⊕ kr+1

13

(xr+1
11 ) ← 02.S[xr

3]⊕ 03.S[xr
4]⊕ 01.S[xr

9]⊕ 01.S[xr
14]⊕ kr+1

14

(xr+1
15 ) ← 03.S[xr

3]⊕ 01.S[xr
1]⊕ 01.S[xr

6]⊕ 02.S[xr
11]⊕ kr+1

15

(1)

2) Decryption Process: The decryption process follows the
same algorithm. However, each step has to be made on the
contrary. The expansion of the key remains the same. Then,
the ciphertext (the input of this process) goes through the
AddRoundKey step, but the first sum with the last part of the
key (opposite way). The MixColumn and the ShiftRow also
perform its operations in opposite way. In the end, the process
outputs the plaintext recovered.

A. Performance-oriented AES
All operations performed by AES can be implemented using

just logical and arithmetic operations. However, to obtain better
performance, the cipher can be optimized for software imple-
mentations using a table with the operations pre-computed, as
presented in [9]. The pre-computed operations comprise the



ICCEEg: 1 (16) – Outubro 2017 34

      

Figure 1. AES-128 encryption diagram, representing the main operations executed over the iterative process of ten rounds.

execution of SubBytes, ShiftRows and MixColumns for all
possibilities (entries of 0 to 255), resulting in four tables of 1
kB, called the T-tables (T0, T1, T2 and T3). There is one more
table (T4) for the last round that does not use the MixColumns
operation.

The performance-oriented AES has two main phases.
The first phase generates the subkeys by key expansion
(expansion(K) → kround). Each subkey is used in the
AddRoundKey step to provide the next round input matrix.
Each byte of this input matrix is related to an index of the
T-tables, where its content represents all operations performed
for such byte. As a consequence, the output of the T-tables
consulting are XORed resulting in a new output matrix, that
can be represented as an intermediate state as follows xround

i ,
where 0 <= i <= 15 and 0 <= round <= 9. In summary,
each intermediate state is used for the next round compu-
tation, which executes a XOR with the next round subkey
(AddRoundKey operation) and the accessed T-tables values
(SubBytes, ShiftRows and MixColumns operations) generating
the next intermediate state. This mathematical iterated opera-
tion can be observed in 2.

(xr+1
0 , xr+1

1 , xr+1
2 , xr+1

3 ) ← T0[x
r
0]⊕ T1[x

r
5]⊕ T2[x

r
10]⊕ T3[x

r
15]⊕ kr+1

0

(xr+1
4 , xr+1

5 , xr+1
6 , xr+1

7 ) ← T0[x
r
4]⊕ T1[x

r
9]⊕ T2[x

r
14]⊕ T3[x

r
3]⊕ kr+1

1

(xr+1
8 , xr+1

9 , xr+1
10 , xr+1

11 ) ← T0[x
r
8]⊕ T1[x

r
13]⊕ T2[x

r
2]⊕ T3[x

r
7]⊕ kr+1

2

(xr+1
12 , xr+1

13 , xr+1
14 , xr+1

15 ) ← T0[x
r
12]⊕ T1[x

r
1]⊕ T2[x

r
6]⊕ T3[x

r
11]⊕ kr+1

3
(2)

The last round is computed by repeating the equation 2 with
r = 9, except that T0, ..., T3 is replaced by T4. The resulting
x10
i is the ciphertext.

B. Crypto-libraries
In this section, we also analyze the commercial implemen-

tations of AES in software. Three widely used crypto libraries
are described, namely OpenSSL [8], PolarSSL [10], and
Libgcrypt [11]. All these AES solutions use the performance
oriented approach. However, each one differs in the last round.
Also, some of them do already contain methods to reduce or
nullify cache-based side channel leakage.

OpenSSL:: It performs the last round using a table T4,
where the S-box and the ShiftRow are previously computed.

PolarSSL:: PolarSSL executes the last round using an
S-Box table. It provides more security than OpenSSL since
the granularity of such table is in bytes not words. The
computation effort increases a little, mainly to perform the
ShiftRow operation.

Libgcrypt:: This library calculates the S-Box values used
in the last round during the encryption. The timing leakage
generated by cache access can be mitigated since there is no
table, but a high computation effort is inserted. Depending on
the sensitivity of the attacker, this methodology could not be
secure.

III. RELATED WORKS

Collision attacks have already been explored by several
authors. Bonneau and Mironov [6] presented for the first time
the cache collision atttack, and they describe three approaches:
i) first round, ii) last round, and iii) expanded last round. The
first round collision attack explores the identical accesses that
may happen to the same T table. So, the attack aims to find
all combinations of plaintexts and keys that result in the same
index of the target T table. The drawback is that it was not
possible to guess exactly which address was accessed, only the
set. As a consequence, the attacker was capable of retrieving
only 68 bits from the key. Even recovering just part of the key,
the attack succeeded in retrieving the full key with an average
of 214.6 samples, a speed up compared to previous works, but
considered even by the authors impractical in real life attacks.

C = {T4[x
10
0 ]⊕ k100 , T4[x

10
5 ]⊕ k101 , T4[x

10
10]⊕ k102 , T4[x

10
15]⊕ k103 ,

T4[x
10
4 ]⊕ k104 , T4[x

10
9 ]⊕ k105 , T4[x

10
14]⊕ k106 , T4[x

10
3 ]⊕ k107 ,

T4[x
10
8 ]⊕ k108 , T4[x

10
13]⊕ k109 , T4[x

10
2 ]⊕ k1010 , T4[x

10
7 ]⊕ k1011 ,

T4[x
10
12]⊕ k1012 , T4[x

10
1 ]⊕ k1013 , T4[x

10
6 ]⊕ k1014 , T4[x

10
11]⊕ k1015}

(3)

To overcome such drawback, Bonneau and Mironov pro-
posed an attack to the last round of AES. Typically, the last
round requires the usage of an extra T table, known as table
T4, because the last round does not compute the MixColumn
operation. Hence, the T4 accesses are exclusive for the last
round, and are represented as follows in 3, where C is the 16
byte output cyphertext. The enhanced last round attack uses not
only the access of the equal indexes, but all index that provoke
a cache hit (collision). Greatly increasing the speed of online



ICCEEg: 1 (16) – Outubro 2017 35

      

sample collection, at the expense of increasing processing in
the offline stage. The different results of these methods can be
observed in table I

Attack Samples needed
First round 214.58

Last round 215

Expanded last round 213

Table I. NUMBER OF SAMPLES REQUIRED FOR EACH ATTACK

Bogdanov et al [1] proposed the attack target of study in
this work, the differential collision cache attack. The main
idea behind this attack is to choose pairs of plaintexts, so
that in the first three rounds of AES encryption, five S-Boxes
are processed pairwisely equal (hits) or different (misses).
In the case of five collisions, as we call pairwisely equal
processed S-Boxes, a wide collision happens. Bogdanov’s
tests show a success rate of around 65% on achieving full key
recovery. Considering a low rate of false positives candidates
detected, due to an optimized detection setup, he described
the complexity of key search to be 241. A result that was
acceptable for that time standards. This attack will be further
detailed in section IV.

Spritzer and Plos [12] investigated the applicability of
Bogdanov’s attack in mobile phone devices. The evaluation
used the same strategy of the original technique, exploiting
the wide-collision behavior. However, the work showed that
the wide-collision detection in mobile hardware platform was
a big challenge. The main reason was the size of the cache
line, which was 64 bytes for the tested devices. This line size
made the attack unpractical, since few cache misses occurred.
As a consequence, the chance of success in the detection stage
of wide collision was about 10%. Besides, Spreitzer and Plos
analysed the key recovery phase, and concluded that this lack
of precision in the detection would increase significantly the
false-positives. Therefore, to check all the possibilities would
be in the order of 252, which is not feasible.

IV. DIFFERENTIAL COLLISION CACHE ATTACK

This attack is known as differential collision cache attack.
This name refers to the exploration of collisions between pairs
of plaintexts. These collisions affect the encryption time of
the second plaintext, which becomes lower. It is challenging
to detect the variations in time caused by the collisions, so
Bogdanov explored a particular condition. He called it as
the wide-collision. This situation has the potential to provoke
five S-Boxes collisions in the first three rounds of the AES
algorithm.

To create the wide-collision situation, the pair of plaintexts
(P1, P2) have to follow a specific formation rule. Firstly, the
attacker has to define a target diagonal. Then, he creates ran-
domly both plaintexts, choosing pairwisely equal elements out
of the target diagonal, and pairwisely different ones inside the
target diagonal. The example below shows the main diagonal
as the target, where the elements from P1 are represented as
ai and from P2 as ei, where 0 < i < 4:

P1 =




a0 x1 x2 x3

x4 a5 x6 x7

x8 x9 a10 x11

x12 x13 x14 a15


 P2 =




e0 x1 x2 x3

x4 e5 x6 x7

x8 x9 e10 x11

x12 x13 x14 e15




The encryption process of this pair (P1, P2) can provoke
a wide-collision if at least one position of the S-Box is
the same for both plaintexts in the second round of AES.
The position of the second round S-Box is a result of the
first round computation (Addround, SubBytes, ShiftRow and
MixColumn). For example, to compute the element a0 that
results in S0, the following equation 4 is used:

S0 ← {02.Sbox(a0 ⊕ k0)⊕
03.Sbox(a5 ⊕ k5)⊕
01.Sbox(a10 ⊕ k10)⊕
01.Sbox(a15 ⊕ k15)}

(4)

After computing the first round for all elements (Si), one
obtains the new pair of plaintext (P 2

1 , P
2
2 ) used to perform the

second round, as follows:

P 2
1 =



s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


 P 2

2 =



s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15




Note that the elements in grey represent pairwisely different
values. The non-marked elements are pairwisely equal, but
this is inherent to the wide-collision situation. This example
considers a collision in S0, identified by the elements in green
(also pairwisely equal). Since all elements in the main diagonal
are pairwisely equal, applying again the equation 4 in the
second round pairs (P 2

1 , P
2
2 ), one obtains four more collisions

in the third round. The new pair of plaintexts (P 3
1 , P

3
2 ) will

collide for all elements in the first column. The plaintexts pair
of the third round is represented as follows:

P 3
1 =



t0 t4 t8 t12
t1 t5 t9 t13
t2 t6 t10 t14
t3 t7 t11 t15


 P 3

2 =



t0 t4 t8 t12
t1 t5 t9 t13
t2 t6 t10 t14
t3 t7 t11 t15




Three main stages comprise the attack:
Online Stage:: For a pair of chosen 16-byte plaintexts

(P1, P2), the main goal of the online stage is to measure the
encryption time of P2. To produce a wide-collision situation,
the pair of plaintext has to follow the rule described above.
Since this rule only applies for one diagonal at a time, this
process repeats four times, one for each target diagonal. The
total amount of encryptions required for each diagonal is N ∗
I ∗ r. The variable N represents the number of random values
the same diagonal will explore. The variable I accounts for
each iteration that the pairwisely equal values are changed to
perform an in-depth exploration of all possibilities inside the
same diagonal. The variable r represents how many times one
performs the same encryption. The objective of this variable is



ICCEEg: 1 (16) – Outubro 2017 36

      

to reduce noise interferences. The duration of all encryptions
is stored and sent to the detection stage.

Detection Stage:: Detection is achieved by analysis of
all encryption times t. It is expected that t will be lower than
average (the result of five look-up tables already in the cache
memory) if a collision occurs. The result of this stage is a
list of the pairs of plaintexts (P1, P2) that possibly caused a
wide collision. They are also classified as candidates.

Key Recovery Stage:: This stage is divided into two
steps. The first step supposes we found 4+m candidates on
the detection stage, m ∈ {0, 1, 2, ..}. We consider all

�
4+m
4

�

possibilities with all 232 subkey candidates. For each choice
of four pairs of (Ai, Ei) we execute AddRoundKey, SubBytes,
ShiftRows and MixColumns. If a collision occurs for at least
one position in the second round; for each of the four pairs in
the group, the subkey candidate joins the final candidates’ list.
The total complexity of this step is in the order of 232∗

�
4+m
4

�
.

The second phase of this stage completes the full key recov-
ery. It concatenates the subkey final candidates and performs an
exhaustive key search. The total complexity of this searching
algorithm is (232 ∗

�
4+m
4

�
)4.

V. PRACTICAL ATTACK IMPLEMENTATION

The differential collision cache attack was adapted to attack
our target MPSoC. This is the first practical implementation of
this attack in a embedded MPSoC platform. Typical interfer-
ences by communication or parallel applications are lower in
such devices. To accomplish the attack described by Bogdanov,
the following adaptations were performed in each stage:
• Online Stage: The IP13 is a trusted processor inside a

secure zone responsible for cryptography tasks in the
system. The attacker runs from any processor outside
the secure zone, in our example, IP04. The malicious
software performs the online stage generating the pairs
of plaintext according to the rule described in the section
IV. Before each pairs of encryption, the shared cache is
filled with an attacker’s data. The objective of that is
to maximize the observation of cache hits and misses,
since all data in the cache will be initialized in the
same state. Only the time of the second encryption
is collected. To optimize the online stage, a relaxed
threshold is applied to collect only the results below
the average. Then, less data storage is required for this
step. The collected data was organized as the following
array Collected[t, Ai, Ei]. The t is the encryption time,
the Ai is the array of the elements in the target diagonal
from the first plaintext, and the Ei is the elements from
the second plaintext. Besides, it was possible to ignore
the r loop since our platform was almost absent of
external application interferences. The reason is because
the latency of the NoC and other system bottlenecks
does not impact in the same magnitude as a cache miss.

• Detection Stage: All the recorded data are then filtered
with an even lower threshold. The key factor here is
to select the minimum amount of candidates, because
the key recovery stage will explore all combinations in
arranges of four against all subkey possibilities, which

brings a complexity of
�
4+m
4

�4∗232. However, few sam-
ples implies in less possibilities to find the correct key.
This trade-off is the most challenging issue regarding
this attack.

• Key Recovery Stage: The input of this stage is given
by

�
4+m
4

�
, which is the combination in arranges of

four of the detected candidates. Each combination is
checked against all 232 subkeys. Using the equation 2,
one searches over each subkey possibility which one
generates a collision after the first round for all the four
candidates in a group. As a result, each combination
checked will output a subkey proposal. Then, all combi-
nations of the proposals have to be tested in a exhaustive
search key step. This stage was performed offline in a
program written in C.

VI. MPSOC GLASS
Idealized not only for evaluating but also software simu-

lating of the multiple processes that simultaneously occurs
in a system-on-a-chip, the MPSoC Glass IDE supports C
programming and compilation. Besides data access and I/O
performance. According to these needs, Visual C was the per-
fect development environment of this IDE, once it introduces
the Microsoft C and its .NET Framework programming library
allied to dynamic design possibilities such as project templates,
property pages, code wizards, an object model and more.

The interface is shown in Figure 2. There are many appli-
cations for MPSoCs that the interface can support. However
the focus is the development, compilation and execution of
applications in a MPSoC running in an FPGA. It basically
consists in a sequence of steps which leads to a software
simulation of data flow between fifteen IPs. IP0 and IP3 are
unavailable to any application of the interface because they are
respectively the shared cache and the external interface. Each
IP button contains a programming environment where you can
write your own code and save it as a text file. These files will
become executable ones when the compiler is configured and
the process of cross-compilation is called.

A. Experimental Environment
The evaluations of the differential collision cache attack

were performed in a real MPSoC platform running on an
FPGA. Thirteen processing elements compose the target MP-
SoC, one shared cache and two external interfaces, as shown
in Fig. 3, interconnected by a 4x4 mesh-based NoC. The
processing element is an ARM processor with L1 cache, a
timer, and a network interface. The L1 is a direct-mapped
cache with 32kB for instruction and data. The shared cache L2
is a set-associative 16-way cache with 256kB, and cache line
size of 16 bytes (four words per line). The NoC is composed
by a 5-port router, with input buffers of eight flits, each flit of
32 bits, and using an XY as the routing algorithm. A direct-
mapped cache was used as L1, to reduce the noise during
experiments. The hardware platform was connected to a host
computer through UART protocol (USB adapter). The external
interface does not affect any experiment, because only the data
after processing was sent to the host. The key recovery stage



ICCEEg: 1 (16) – Outubro 2017 37

      

Figure 2. MPSoC Glass IDE Graphical User Interface.

Figure 3. Profiling Phase - Signature of the position 0.

was performed in the host computer through Python scripts
and a program written in C.

The malicious software was downloaded to a non-trusted
processor, located outside the secure zone at IP4. The trusted
processor at IP13 was responsible to run the AES encryptions
with a secret key. To access the T tables, the crypto processor
needs to communicate with the shared cache at IP0.

B. Attack Execution
The online stage used the following parameters n = 1000,

and I = 800. After an initial analysis, a relaxed threshold was
applied in the online stage to select less elements. The time to

Figure 4. Detected candidates. The elements below the threshold are selected
to the key recovery search.

process the online stage in the MPSoC running on an FPGA
was about four hours. It resulted in eighty-six samples to be
analyzed by the key recovery stage. Figure 4 shows the online
stage output.

For analyses purposes, marks in the figure presents the status
of each sample. The possibilities are true positive (TP), bad
positive (BP), and false positive (FP). The true positives are
the wide collisions that leads to the correct subkey values.
The bad positives are the candidates that obtained cache hits
due to the access of the same cache line. The false positives
are the candidates without wide collision.

The attack requires that at least four true positives are
present in the candidates to be analyzed by the key recovery
stage. Hence, the attack of our experiment only works if a
threshold of 510000 was applied. This resulted in thirty-four
candidates to be analyzed, where five are true positives. Thirty-
four candidates represents

�
4+34

4

�
→ 46376 groups to be

checked. The key recovery stage looks for each group a subkey



ICCEEg: 1 (16) – Outubro 2017 38

      

candidate that leads to a collision in some position, meaning a
search of 46376∗232 (or 247.5). After this step, the attacker has
46376 possibilities for one subkey, and all combinations have
to be checked together with the other subkey parts to compose
the final key. The last step complexity stays in (215.5)4 → 262.

VII. CONCLUSION

Works on the state-of-the-art have shown different threats for
the SoCs, as well as countermeasures against them. However,
few works were directed to multi-processor systems. This lack
of information motivated this author to review in the bibliogra-
phy the main attack proposals for SoCs, in order to identify a
critical vulnerability of these new systems, specially for remote
scenarios. The present research culminated in the investigation
of a promising timing attack, based on the behavior of cache
hits, known as collision attacks. The Bogdanov’s collision
attack was chosen to be studied and adapted to an MPSoC
architecture. The process resulted in the first contribution of
this paper, a threat model and a methodology of this attack
when applied to MPSoCs. The practical evaluation running
in an FPGA was made through an MPSoC environment,
developed as part of this research, the MPSoC Glass. This
platform was crucial to the implementation of the attack,
enabling the execution of different rounds of tests, which
were important to guarantee the quality of the results. Such
emulation platform became even more important, in sight of
the development of security research, to evaluate attacks such
as countermeasures. Results of our experiments have shown
that Bogdanov’s differential collision attack is capable of
revealing the secret key of AES. However, it had demonstrated
a significant issue that must be addressed before any execution.
The attack tries to identify a variation in the timing, caused by
five cache hits during the cryptography. During an encryption,
several cache hits between the elements can occur, which
makes hard to detect the time from this five cache hits situation
(also known as wide collision). Hence, a high number of
samples must be selected for the key search space. The output
of our tests in the online stage presented a high number of
false positives, that originated from the detection stage. As
a consequence, a higher number of samples was required.
Since the key recovery stage analyses all combinations of the
detected candidates, the final search complexity was 247.5 for
only thirty-eight elements. Such complexity is high but still
possible to compute. Considering that we used four words per
line in the cache, in a scenario with bigger caches, for example
high performance systems, the attack might not be practical.

REFERENCES

[1] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, Differential
Cache-Collision Timing Attacks on AES with Applications to Embedded
CPUs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 235–
251.

[2] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, ser. CRYPTO 96.
London, UK, UK: Springer-Verlag, 1996, pp. 104–113.

[3] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel,” 2002.

[4] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Coun-
termeasures: The Case of AES. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 1–20.

[5] D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep., 2005.
[6] J. Bonneau and I. Mironov, Cache-Collision Timing Attacks Against

AES. Springer Berlin Heidelberg, 2006, pp. 201–215.
[7] M. Neve, J. pierre Seifert, and Z. Wang, “Cache time-behavior analysis

on aes.”
[8] T. O. S. Project, “Openssl: The open source toolkit for ssl/tls.” Available

at: www.openssl.org, accessed at 2017-10-07.
[9] J. Daemen and V. Rijmen, The Design of Rijndael. Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 2002.
[10] PolarSSL, “Polarssl: Straightforward,secure communication.” Available

at: www.polarssl.org, accessed at 2017-10-07.
[11] G. Libgcrypt, “The libgcrypt reference manual.” Available at:

http://www.gnupg.org/documentation/manuals/gcrypt/, accessed at
2017-10-07.

[12] R. Spreitzer and T. Plos, “On the applicability of time-driven cache
attacks on mobile devices (extended version),” in Network and System
Security, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 656–662.


