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      Design Strategy for Testing Sequential Logic Gates
Based on Signal Pattern Generator

Pablo Rafael Bodmann, Renato Perez Ribas

Abstract—The validation of standard cell libraries used on
digital integrated circuit design is a crucial task. However, the
test of sequential logic gates is quite complex due to the inherent
memory effect. In this work, it is proposed a universal signal
pattern generator to be applied in a novel test circuit strategy. To
model the problem our approach creates a pattern sequence over
structures like graph and tree structures. As proof-of-concept, a
Java application has been developed. Experimental results have
shown that such a strategy has attained a high coverage of logic
faults.

Index Terms—digital circuit, standard cell library, logic gate,
sequential cell, test.

I. INTRODUCTION

THE design of integrated circuits (IC) comprises many
tasks. In order to reduce design costs and time-to-market,

standard cells design methodology has been widely adopted.
This methodology is based on the reuse of blocks and small
circuits (named as cells) that implement logic functions. These
pre-designed cells are available in a library and must be pre-
evaluated and pre-validated before using in ASIC design.

Since a library usually comprises a large number of logic
gates and all of them must be validated, efficient test setups
are essential to reduce design costs. For combinational gates,
we consider that the solution proposed in [1] is quite simple
and effective. However, the test of sequential logic gates is
more complex than the combinational ones due to the inherent
memory behavior, i.e., the current output signals depend not
only on the current input variables but also on the previous
sequence of these ones. Another difficulty is the presence
of asynchronous signals that have priority in the sequential
behavior.

Several attempts have been proposed related to the testing
of sequential logic gates. In [2], the authors propose the
use of Boolean equation describing the gate and create a
corresponding state table in order to calculate the minimum
input sequence to cover all possible defects usually observed
in the registers. Despite of having high coverage, this solution
is not general, i.e., the sequence depends on the specific circuit
behavior targeted. This is a huge problem when testing a large
set of gates with different behaviors because for each group
of gates a single generator must be created so increasing the
complexity of the test. Another approach evaluates latches and
flip-flops using shift-register and counter circuitries, respec-
tively [3]. However, it is not shown the way to create a new
shift-register for testing other sequential logic gates different
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from the ones treated in that work. Therefore, this solution is
not general yet. An approach based on finite state machine,
for describing the sequential gate behavior, is found in [4].
However, as this approach also represents particular solutions
for specific sequential gates, a large circuit area overhead is
expected.

In this work, we proposed a universal logic vector generator
for testing sequential circuits. The main idea is that the
generator provides one signal transition per cycle, covering all
possible steady states and signal transitions. Repeated output
signal transitions do not occur.

This article is organized as follows. Section II discusses
the possible static states, expected and unexpected transitions
of sequential logic gates. Section III analyzes some previous
approaches related to the testing of sequential cells. Section IV
presents the proposed approach. Section V shows the circuit
generator implementation. Section VI shows and discusses
some experimental results. The conclusions are outlined in
Section VII.

II. PRELIMINARIES

This section presents the logic behavior observed in se-
quential logic gates such as the steady states and dynamic
states (expected and unexpected transitions). Three basic gates
are taken into account to illustrate these situations: C-element
(Mller cell), D-type latch and D-type flip-flop, both with
asynchronous reset signal. In the C-element circuit, when
both inputs are equal the same logic value is presented at
the output, and when the inputs are different the gate output
keeps its previous state [5]. In the case of D-type latch with
asynchronous reset, it is a level sensitive logic gate, i.e.,
when the enable signal is high the value at the data input
is transmitted to the output, and when the enable input is low
the previous output is maintained. The D-type flip-flop, on
the other hand, has a similar behavior to the latch but it is
border sensitive circuit, i.e., the value at the data input is only
transmitted to the output when the clock input rises.

A. Steady States

In order to have the maximum test coverage, the analysis
of the steady states of the circuit is a crucial task. The steady
states are the combination of inputs and output values. Table
I shows the steady states of the C-element, Table II presents
the steady states of the D-type latch with asynchronous reset
signal, and Table III shows the steady states of the D-type
flip-flop with asynchronous reset.

It is worth to note that some input combinations can have
two possible outputs. The reason is the memory effect of the
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TABLE I
C-ELEMENT STEADY STATES

A B Previous Q expected Q
0 0 X 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 X 1

TABLE II
D-TYPE LATCH WITH ASYNCHRONOUS RESET STEADY STATES

R D E Q
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
1 X X 0

TABLE III
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET STEADY STATES

R D CLK Q
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 X X 0

latch. In the flip-flop, it still is more significant. The reason for
that is the fact that the latch is a level sensitive gate whereas
the flip-flop is a border sensitive circuit. Therefore, the flip-
flop presents more states to be covered. In order to cover these
states, it is necessary to pass through a specific transition. The
states with reset with the ”1” logic value were omitted because
the output is stuck at the 0 logical value. The C-element has an
interesting behavior compared with latch and flip-flop gates.
Instead of having the memory behavior controlled by a single
input, in this case, it is controlled by both of them. This
behavior is desired in asynchronous circuit, where there is no
global clock signal [5].

B. Dynamic States: Expected Transitions

Another important aspect of test coverage is the expected
transitions, i.e., when an input changes there is a transition
at the output. Table IV shows the expected transitions of the
C-element gate, Table V presents the expected transitions of
the D-type latch, and Table VI shows the expected transitions
of the D-type flip-flop.

Again, the difference among these circuits can be observed.
The transition in the data input is only propagated to the output
when the enable input is high or when the enable input rises
the data input and this one differs from the current state of the
latch. This propagation only occurs in the flip-flop when the
clock signal rises and the data input differs from the current

TABLE IV
C-ELEMENT EXPECTED TRANSITIONS

A B Previous Q expected Q
1 ↑ 0 ↑
↑ 1 0 ↑
↓ 0 1 ↓
0 ↓ 1 ↓

TABLE V
D-TYPE LATCH WITH ASYNCHRONOUS RESET EXPECTED TRANSITIONS

R D E Previous Q Q
0 0 ↑ 1 ↓
0 ↑ 1 0 ↑
0 ↓ 1 1 ↓
↑ 1 1 1 ↓
↑ 1 0 1 ↓
↓ 1 1 0 ↑

TABLE VI
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET EXPECTED TRANSITIONS

R D CLK Previous Q Q
0 1 ↑ 0 ↑
0 0 ↑ 1 ↓
↑ X X 1 ↓

state of the flip-flop. The propagation of transitions in the C-
element occurs when one input transitions to a value equal to
the other, and this new input value differs from the current
C-element state.

C. Dynamic States: Non-Expected Transitions

Besides testing expected transitions, it is important to test
the non-expected transitions. These transitions occur when the
input is transitioned but the output must stay stable. Table VII
shows the non-expected transitions for C-element, Table VIII
presents the non-expected transitions for latch, and Table IX
shows the ones for the flip-flop.

The states show the memory effect of these circuits, when
a transition does not propagate to the output. These transitions
must be covered in order to completely test whether the gate
is holding the state and not transitioning.

III. RELATED WORKS

As mentioned in the Introduction section, there are proposed
works which show some approaches to test sequential cells,
especially D-type latches with asynchronous set and reset and
D-type flip-flop with asynchronous set and reset.

At [2], it is proposed a set of necessary conditions in order
to fully test latches. Using a logical equation to describe the
possible states of the gate, the paper delimiters some essential

TABLE VII
C-ELEMENT NON-EXPECTED TRANSITIONS

A B Previous Q expected Q
↑,↓ 0 0 0
↑,↓ 1 1 1
0 ↑,↓ 0 0
1 ↑,↓ 1 1
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TABLE VIII
D-TYPE LATCH WITH ASYNCHRONOUS RESET NON-EXPECTED

TRANSITIONS

R D E Previous Q expected Q
0 ↑,↓ 0 X X
1 ↑,↓ X X X
1 X ↑,↓ X X
↑,↓ X X 0 0
0 0 ↑,↓ 0 0
0 1 ↑,↓ 1 1

TABLE IX
D-TYPE FLIP-FLOP WITH ASYNCHRONOUS RESET NON-EXPECTED

TRANSITIONS

R D CLK Previous Q expected Q
0 ↑,↓ X X X
0 X ↓ X X
↑,↓ X X 0 0

sequences that must be part of the checking experiment in
order to cover all possible steady states. Despite detecting
all faults of a logic gate, this solution misses some possible
transitions, as well as it is not generic and it is not cyclic,
requiring a reset signal.

At [3], the testing of D-type latch with asynchronous set
and reset is done by instantiating a 12-bit shift-register with
the same gate under test, as shown in Fig. 1. However, some
latches have the set and reset signals behavior determined by
the current overall state of the register, and the enable polarity
signal is inverted at every couple of latches. The steady state
coverage is almost 100% but the state where both set and reset
are on is not covered. Moreover, some possible and unexpected
output transitions are not covered by this approach.

Fig. 1. Shift register setup described at [3]

For testing the D-type flip-flop with asynchronous set and
reset, a modified 5-bit counter is created where each bit is
the same gate under test, as shown in Fig. 2. Similar to the
test of the latch, the set and reset signals of several bits are
dependent of different states of the counter and are calculated
by a handshake circuit. The test covers all steady states
excluding the ones with both set and reset signals activated.
The transition coverage is 50% of the unexpected transitions.
Both solutions are specific either latch or to flip-flop, and it is
not shown the way to create a shift-register to test other kind
of sequential gates.

Another approach is defined at [4], where finite-state ma-
chine (FSM) is created using the circuit behavior description.
The FSM passes through all steady states and signal transitions
in order to create an input pattern sequence that has 100% of
coverage. Despite being similar to this work, the mentioned

Fig. 2. Modified counter described at [3]

generator is dependent of the gate behavior and the proposed
one is dependent only to the number of signals. Another
problem is that the length of the sequence varies with the initial
state. This solution, despite of having 100% of coverage, is not
general aw well as it is not cyclic requiring a reset signal.

IV. PROPOSED SELF-CHECK SETUP

In this paper, it is proposed a universal generator for testing
sequential logic gates, i.e., a generator independent from the
circuit behavior. The generator provides signals in a cyclic
sequence, i.e., a sequence that starts and terminates at the same
input vector. This is desired because the generator can be left
running to stops only when an error occurs. It covers also all
input states and signal transitions. The signal transitions occur
by changing one bit per step. Such a characteristic is important
because it avoids timing race conditions that can cause meta-
stability and raise false-positive errors. Another reason is that
it is easier to debug when an error occurs.

This work is very similar to [2] and [4] due to the use of
FSM strategy. The difference is that we disregard the gates
behavior and only focus the number of inputs that the circuits
have. Another difference between these two previous works
and the one proposed is that this generator is cyclic and can
run multiple times without external signals if necessary.

The proposed generator is part of a larger test bench. Fig.
3 shows the proposed generator and the test bench. Using
the concept of self-checking, i.e., the test bench does not
need external clock signal to run. Instead, it creates its own
temporizing signal. When using this principle, the generator
must also provide a template that is compared with the gate
output. Since the template signal is usually faster than the
circuit output, the checker provides a 0 logic value. If the
output is correct, then the checker provides 1 logic value,
creating a rising border at the internal clock signal. Thus,
making the generator provides the next states. If an error
occurs, this rising edge does not occur, locking the generator
at the current state.

V. GENERATOR MODEL

A. Modeling

Since the proposed generator is universal, its behavior must
be independent from the gate under test. Therefore, we ignore
the gate memory effect and treat it as a black box. One
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Fig. 3. The self-check setup

candidate would be the Gray code but it does not cover all
possible states, as shown in Table X. Thus, a better model is
necessary in order to solve such a deficiency.

TABLE X
3-BIT GRAY CODE AND ITS MISSING TRANSITIONS.

Gray Code Missing Transitions
000 000 → 010 and 000 → 100
001 001 → 101 and 001 → 000
011 011 → 001 and 011 → 111
010 010 → 011 and 010 → 000
110 110 → 010 and 110 → 100
111 111 → 110 and 111 → 011
101 101 → 111 and 111 → 001
100 100 → 101 and 100 → 110

Using the content in Table X, a graph can be built. The
nodes represent the possible states and the edges of the
transitions. Fig. 4 shows the resulting graph of a 3-input gate.
This kind of graph is called an n-cube graph or a hypercube.
Since it is interesting to cover both rising transition, when a
bit goes from logic value 0 to value 1, and falling transition,
when a bit goes from logic value 1 to value 0, the graph must
be bidirectional.

Fig. 4. 3-Dimensional Hypercube representing a 3 bit Gray Code

Once having built the graph, it is only necessary to find
out an Euler cycle, i.e., a cycle that passes through all edges
exactly once, beginning and ending at the same node. Due

to the form of the graph, it has many different Euler cycles
and to find one, it is proposed a simple solution. The graph
is transformed in a tree. Each node can be interpreted as a
number and each node must have their sons with larger values
and their father with smaller value. The root will have the
lowest value possible, the state with every input at the 0 logic
value. In order to preserve all possible transitions, some nodes
must be repeated. Fig. 5 shows the resulting tree for the graph
in Fig. 4. Once having the tree, it is only necessary to make a
depth first search (DFS) in order to generate an Euler cycle.

B. Implementation

During the implementation, some shortcuts can be used in
order to speed up the process. The graph building phase can
be skipped and the tree can be represented with a table, such
as shown in Table XI. The columns are the nodes and each
row has the possible next node. The creation of this table can
be done by flipping the bits with 0 in order to save only the
numbers larger than the current. Fig. 6 shows the pseudocode
for the creation of data shown in Table XI. The DFS can be
performed by saving the current column, jumping to the first
son and marking it as visited. If jumping to a column with no
sons or with all sons visited, the algorithm jumps back to the
previous node from which it came. The algorithm stops when
all sons from the 0 state are visited. Fig. 7 shows the pseudo
algorithm for the creation of the sequence.

C. Complexity

With a gate with N inputs, the possible states are 2N

different states. In order to calculate the larger values, each
bit up to the Nth bit must be tested and inverted if necessary.
Thus, the complexity for creation of data in Table is N ∗ 2N .
The creation of the sequence is also N ∗ 2N . That is, in order
to represent all possible transitions, it is necessary to storage
and pass through N ∗ 2N +1 states. Since the last state is the
0 state, it can be ignored and, in order to maintain this last
transition, it is only necessary to return to the beginning of
the list.

VI. RESULTS

In order to validate the proposed universal signal generator,
a Java application has been created. In this application, the
behavior of the circuit under test was described and the
corresponding steady states and signal transitions calculated
automatically. Afterwards, the behavioral model of the logic
gate was submitted to the sequence stimuli transitions and
the test coverage was evaluated. The first steady state of
the generator output is set at the logic value 0. The gates

TABLE XI
TABLE CONTAINING EACH NODE ADJACENCY LIST REPRESENTING THE

TREE IN FIG. 5

Nodes 000 001 010 011 100 101 110 111

Next Nodes
001 011 011 111 101 111 111
010 101 110 110
100
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Fig. 5. The resulting tree from the graph in Fig 4

1: Input: The number of inputs of the CUT
2: procedure Create Table(N )
3: adjacency table = [[] ∗N ]
4: for i = 0; i < 2N ; i++ do
5: mask = 1
6: for j = 0; j < N ; j ++ do
7: if temp ∧mask == 0 then
8: temp = i⊕mask
9: adjacency table[i].append(temp)

10: end if
11: mask � 1
12: end for
13: end for
14: return adjacency table
15: end procedure

Fig. 6. Pseudocode for creating Table of adjacency lists

1: Global pattern list
2: Global adjacency table
3: procedure Create pattern(node)
4: pattern list.append(node)
5: for each element in adjacency table[node] do
6: Create pattern(element)
7: pattern list.append(node)
8: end for
9: mark visited(node)

10: end procedure

Fig. 7. Pseudocode for creating the pattern sequence

used as case studies for such a validation was the D-type
latch, D-type latch with asynchronous set, D-type latch with
asynchronous reset, D-type latch with asynchronous set and
reset, D-type flip-flop, D-type flip-flop with asynchronous set,
D-type flip-flop with asynchronous reset, D-type flip-flop with
asynchronous set and reset, and a Mller cell (or C-element).
The generator outputs ordering of signal connections used was:
output 0 is enable (E) or clock (Ck) inputs, output 1 is data
(D) input, output 2 is reset (R) or set (S) input, and output
3 is set when reset signal is also available. Since there are
vectors where set and reset are turned on, it was supposed that

reset has priority over set, it means, when both set and reset
asynchronous signals are activates the gate output goes down
(value 0). Table XII shows the test coverage when considering
a single instance of each sequential gate connected to the
proposed generator.

TABLE XII
COVERAGE USING A SINGLE CELL

Cell Steady State
Coverage

Dynamic States
Coverage

D-Latch 100% 75%
SD-Latch 100% 83.34%
RD-Latch 90% 80%

RSD-Latch 100% 90.27%
D-FF 87.5% 56.25%

SD-FF 91.67% 69.44%
RD-FF 83.34% 66.66%
RSD-Ff 100% 81.25%

C-element 100% 66.66%

Using a single instantiation of the circuit under test, 100%
of coverage was not attained in some cases, neither in steady
state coverage nor in dynamic coverage (transitions). It is
resulting from the memory effect of sequential circuit. Some
input to output signal transitions and states are hidden from
the stimulus sequence of the generator. Fig. VI shows the
modelling of a D-type flip-flop with asynchronous reset. The
borderless green circle represents the possible input vectors
that the corresponding output is expected to be 1, and the red
border circle represents the input vector with the output in 0.
When compared to the modelling in Fig. 4, it can be seen that
some input vectors are repeated and there are more transitions,
being some of them one-direction only.

Since it is desired to maintain the universal characteristics of
the generator, the direct use of the circuit under test behavior
cannot be used to create a specific sequence with higher
coverage. Instead, the circuit behavior, the vector sequence and
the multiple instantiations of the same gate can be previously
calculated. This multiple instances can have none, one or more
negated inputs, that means, the connection of the signal from
the generator to the circuit is negated before arriving in the
circuit input. Moreover, such a connection can be permuted,
i.e., not following the previous connection ordering. Table XIII
shows the dynamic coverage using such a strategy. The number
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Fig. 8. D-type flip-flop with asynchronous reset model

of instances of the gate under test is the minimum necessary to
achieve the maximum test coverage. By making so, all steady
state coverage attained (100%), therefore it was omitted. As
can be seen for almost all gates under test, the dynamic test
coverage is 100%. It is possible because when permuting or
negating the stimulus signals, the circuit is actually starting
at a different state and passing through a different sequences
without modifying the generator. In the case of the flip-flops
without asynchronous signals (D-FF) and with reset signal
(RD-FF), where the complete test coverage is not achieved,
only a single dynamic state has not been observed, when clock
signal is rising, data signal is at high value, reset is at low
value, and the current output state is high and does not change.

In order to evaluate the scaling factor of the proposed
approach in terms of circuit area, it is considered two possible
designs for the generator: the first one by synthesizing the
circuit from a Verilog description of the universal generator;
the second one by applying a ROM block with the planned
signal sequence. In the synthesis solution, the logic gates used
were been restricted to only 2-input NOR (NOR2), inverter
and flip-flop in order to estimate the resulting circuit size in
equivalent gate metric, defined as a NOR2-based circuit area.
Fig. 9 shows the number of logic gates used in the resulting
map per number of outputs of the generator. As can be seen,

TABLE XIII
COVERAGE USING MULTIPLE INSTANCES

Cell # of cells used Dynamic State
Coverage

D-Latch 2 100%
SD-Latch 3 100%
RD-Latch 4 100%

RSD-Latch 2 100%
D-FF 3 93.75%

SD-FF 4 100%
RD-FF 5 97.23%
RSD-Ff 3 100%

C-element 2 100%

the number of NOR2 and inverters grows exponentially with
the number of bits at the output signal vector. The number of
flip-flops grows linearly because they are only required in the
counter circuit and in the output register.

Fig. 9. Graph showing the numbers of gates per generator

The other possible physical implementation is the use of
a read-only-memory (ROM) block. Since each signal state
(output of generator) uses one line of the ROM, the resulting
memory must be capable of mapping at least N∗2N addresses.
In order to profit of the full capacity of the memory, the
sequence can be parted in N banks of memory with capacity
for 2N addresses. As in the previous design solution, through
standard cells synthesis, this one grows exponentially as well.

VII. CONCLUSION

In this paper was proposed a general signal generator for
testing standard cell libraries, in particular sequential logic
gates (latches and flip-flops). Due to the inherent memory
effect of these gates, even providing all possible single signal
transition as stimuli, it was proven to be not sufficient in some
cases to attain 100% of test coverage. On the other hand, the
same generator can be applied to test several logic gates in
parallel, reducing the area overhead. The generator was im-
plemented in Java language, as proof-of-concept. The physical
implementation of corresponding circuit is on progress.
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